{"title":"金兹堡-朗道展开的收敛性:BCS 理论中的超导性和 NJL 模型中的手性对称破缺","authors":"William Gyory, Naoki Yamamoto","doi":"10.1093/ptep/ptae032","DOIUrl":null,"url":null,"abstract":"We study the convergence of the Ginzburg-Landau (GL) expansion in the context of the Bardeen-Cooper-Schrieffer (BCS) theory for superconductivity and the Nambu–Jona-Lasinio (NJL) model for chiral symmetry breaking at finite temperature T and chemical potential μ. We present derivations of the all-order formulas for the coefficients of the GL expansions in both systems under the mean-field approximation. We show that the convergence radii for the BCS gap Δ and dynamical quark mass M are given by Δconv = πT and $M_{\\rm conv} = \\sqrt{\\mu ^2 + (\\pi T)^2}$, respectively. We also discuss the implications of these results and the quantitative reliability of the GL expansion near the first-order chiral phase transition.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":"37 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of Ginzburg-Landau expansions: superconductivity in the BCS theory and chiral symmetry breaking in the NJL model\",\"authors\":\"William Gyory, Naoki Yamamoto\",\"doi\":\"10.1093/ptep/ptae032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the convergence of the Ginzburg-Landau (GL) expansion in the context of the Bardeen-Cooper-Schrieffer (BCS) theory for superconductivity and the Nambu–Jona-Lasinio (NJL) model for chiral symmetry breaking at finite temperature T and chemical potential μ. We present derivations of the all-order formulas for the coefficients of the GL expansions in both systems under the mean-field approximation. We show that the convergence radii for the BCS gap Δ and dynamical quark mass M are given by Δconv = πT and $M_{\\\\rm conv} = \\\\sqrt{\\\\mu ^2 + (\\\\pi T)^2}$, respectively. We also discuss the implications of these results and the quantitative reliability of the GL expansion near the first-order chiral phase transition.\",\"PeriodicalId\":20710,\"journal\":{\"name\":\"Progress of Theoretical and Experimental Physics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical and Experimental Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae032\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae032","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Convergence of Ginzburg-Landau expansions: superconductivity in the BCS theory and chiral symmetry breaking in the NJL model
We study the convergence of the Ginzburg-Landau (GL) expansion in the context of the Bardeen-Cooper-Schrieffer (BCS) theory for superconductivity and the Nambu–Jona-Lasinio (NJL) model for chiral symmetry breaking at finite temperature T and chemical potential μ. We present derivations of the all-order formulas for the coefficients of the GL expansions in both systems under the mean-field approximation. We show that the convergence radii for the BCS gap Δ and dynamical quark mass M are given by Δconv = πT and $M_{\rm conv} = \sqrt{\mu ^2 + (\pi T)^2}$, respectively. We also discuss the implications of these results and the quantitative reliability of the GL expansion near the first-order chiral phase transition.
期刊介绍:
Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan.
PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013.
PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics.
PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.