从分组数据中稳健估计单参数帕累托分布的尾部指数

IF 2 Q2 BUSINESS, FINANCE
Risks Pub Date : 2024-03-01 DOI:10.3390/risks12030045
Chudamani Poudyal
{"title":"从分组数据中稳健估计单参数帕累托分布的尾部指数","authors":"Chudamani Poudyal","doi":"10.3390/risks12030045","DOIUrl":null,"url":null,"abstract":"Numerous robust estimators exist as alternatives to the maximum likelihood estimator (MLE) when a completely observed ground-up loss severity sample dataset is available. However, the options for robust alternatives to a MLE become significantly limited when dealing with grouped loss severity data, with only a handful of methods, like least squares, minimum Hellinger distance, and optimal bounded influence function, available. This paper introduces a novel robust estimation technique, the Method of Truncated Moments (MTuM), pecifically designed to estimate the tail index of a Pareto distribution from grouped data. Inferential justification of the MTuM is established by employing the central limit theorem and validating it through a comprehensive simulation study.","PeriodicalId":21282,"journal":{"name":"Risks","volume":"46 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Estimation of the Tail Index of a Single Parameter Pareto Distribution from Grouped Data\",\"authors\":\"Chudamani Poudyal\",\"doi\":\"10.3390/risks12030045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous robust estimators exist as alternatives to the maximum likelihood estimator (MLE) when a completely observed ground-up loss severity sample dataset is available. However, the options for robust alternatives to a MLE become significantly limited when dealing with grouped loss severity data, with only a handful of methods, like least squares, minimum Hellinger distance, and optimal bounded influence function, available. This paper introduces a novel robust estimation technique, the Method of Truncated Moments (MTuM), pecifically designed to estimate the tail index of a Pareto distribution from grouped data. Inferential justification of the MTuM is established by employing the central limit theorem and validating it through a comprehensive simulation study.\",\"PeriodicalId\":21282,\"journal\":{\"name\":\"Risks\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/risks12030045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/risks12030045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

当有完全观测到的损失严重程度样本数据集时,有许多稳健估计法可替代最大似然估计法(MLE)。然而,在处理分组损失严重程度数据时,MLE 的稳健替代方法就变得非常有限,只有最小二乘法、最小海灵格距离法和最优有界影响函数等少数几种方法可用。本文介绍了一种新颖的稳健估计技术--截断矩法(MTuM),专门用于从分组数据中估计帕累托分布的尾部指数。本文利用中心极限定理建立了 MTuM 的推论依据,并通过全面的模拟研究对其进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Estimation of the Tail Index of a Single Parameter Pareto Distribution from Grouped Data
Numerous robust estimators exist as alternatives to the maximum likelihood estimator (MLE) when a completely observed ground-up loss severity sample dataset is available. However, the options for robust alternatives to a MLE become significantly limited when dealing with grouped loss severity data, with only a handful of methods, like least squares, minimum Hellinger distance, and optimal bounded influence function, available. This paper introduces a novel robust estimation technique, the Method of Truncated Moments (MTuM), pecifically designed to estimate the tail index of a Pareto distribution from grouped data. Inferential justification of the MTuM is established by employing the central limit theorem and validating it through a comprehensive simulation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Risks
Risks Economics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
3.80
自引率
22.70%
发文量
205
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信