{"title":"在以 G. hirsutum 为背景的 Gossypium tomentosum CSSLs 中绘制纤维和种子相关性状的 QTL 图谱","authors":"Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang","doi":"10.1016/j.jia.2024.02.023","DOIUrl":null,"url":null,"abstract":"Introducing the inherent genetic diversity of wild species into cultivars has become one of the hot spots in crop genetic breeding and genetic resources research. Fiber- and seed-related traits, which are critical to the global economy and people's livelihoods, occupy the principal status of cotton breeding. Here, a wild cotton species , was used to broaden the genetic basis of . and identify QTL for fiber- and seed-related traits. A population of 559 chromosome segment substitution lines (CSSLs) was established with various chromosome segments from . in a . cultivar background. A total of 72, 89, and 76 QTLs were identified for three yield traits, five fiber quality traits, and six cottonseed nutrient quality traits, respectively. Favorable alleles of 104 QTLs were contributed by . . Sixty-four QTL were identified in two or more environments, and candidate genes for three of them were further identified. The results of this study contributed to further study on the genetic basis of the morphogenesis of these economic traits, as well as indicating that the great breeding potentials of . in improving the fiber- and seed-related traits in . .","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"8 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping QTL for fiber- and seed-related traits in Gossypium tomentosum CSSLs with G. hirsutum background\",\"authors\":\"Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang\",\"doi\":\"10.1016/j.jia.2024.02.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introducing the inherent genetic diversity of wild species into cultivars has become one of the hot spots in crop genetic breeding and genetic resources research. Fiber- and seed-related traits, which are critical to the global economy and people's livelihoods, occupy the principal status of cotton breeding. Here, a wild cotton species , was used to broaden the genetic basis of . and identify QTL for fiber- and seed-related traits. A population of 559 chromosome segment substitution lines (CSSLs) was established with various chromosome segments from . in a . cultivar background. A total of 72, 89, and 76 QTLs were identified for three yield traits, five fiber quality traits, and six cottonseed nutrient quality traits, respectively. Favorable alleles of 104 QTLs were contributed by . . Sixty-four QTL were identified in two or more environments, and candidate genes for three of them were further identified. The results of this study contributed to further study on the genetic basis of the morphogenesis of these economic traits, as well as indicating that the great breeding potentials of . in improving the fiber- and seed-related traits in . .\",\"PeriodicalId\":16305,\"journal\":{\"name\":\"Journal of Integrative Agriculture\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jia.2024.02.023\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.02.023","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mapping QTL for fiber- and seed-related traits in Gossypium tomentosum CSSLs with G. hirsutum background
Introducing the inherent genetic diversity of wild species into cultivars has become one of the hot spots in crop genetic breeding and genetic resources research. Fiber- and seed-related traits, which are critical to the global economy and people's livelihoods, occupy the principal status of cotton breeding. Here, a wild cotton species , was used to broaden the genetic basis of . and identify QTL for fiber- and seed-related traits. A population of 559 chromosome segment substitution lines (CSSLs) was established with various chromosome segments from . in a . cultivar background. A total of 72, 89, and 76 QTLs were identified for three yield traits, five fiber quality traits, and six cottonseed nutrient quality traits, respectively. Favorable alleles of 104 QTLs were contributed by . . Sixty-four QTL were identified in two or more environments, and candidate genes for three of them were further identified. The results of this study contributed to further study on the genetic basis of the morphogenesis of these economic traits, as well as indicating that the great breeding potentials of . in improving the fiber- and seed-related traits in . .
期刊介绍:
Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.