Nicolás Gonzálvez-Gallego, María Concepción Pérez-Cárceles, Laura Nieto-Torrejón
{"title":"搜索查询能预测暴力侵害妇女行为吗?基于谷歌趋势的预测模型","authors":"Nicolás Gonzálvez-Gallego, María Concepción Pérez-Cárceles, Laura Nieto-Torrejón","doi":"10.1002/for.3102","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a new indicator for reported intimate partner violence against women based on search query time series from Google Trends. This indicator is built up from the relative popularity of three topic-related keywords. We propose a predictive model based on this specific Google index that is assessed relative to two alternative models: the first one includes the lagged variable, while the second one considers fatalities as a predictor. This comparative analysis is run in two different samples, whether the reported cases are a direct consequence of a violent direct or not. Our results show that the predictive model based on Google data significantly outperforms the other two models, regardless the sample and the forecast horizon. Then, using information gathered from Google queries may improve the allocation and management of resources and services to protect women against this form of violence and to improve risk assessment.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do search queries predict violence against women? A forecasting model based on Google Trends\",\"authors\":\"Nicolás Gonzálvez-Gallego, María Concepción Pérez-Cárceles, Laura Nieto-Torrejón\",\"doi\":\"10.1002/for.3102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a new indicator for reported intimate partner violence against women based on search query time series from Google Trends. This indicator is built up from the relative popularity of three topic-related keywords. We propose a predictive model based on this specific Google index that is assessed relative to two alternative models: the first one includes the lagged variable, while the second one considers fatalities as a predictor. This comparative analysis is run in two different samples, whether the reported cases are a direct consequence of a violent direct or not. Our results show that the predictive model based on Google data significantly outperforms the other two models, regardless the sample and the forecast horizon. Then, using information gathered from Google queries may improve the allocation and management of resources and services to protect women against this form of violence and to improve risk assessment.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3102\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3102","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Do search queries predict violence against women? A forecasting model based on Google Trends
This paper introduces a new indicator for reported intimate partner violence against women based on search query time series from Google Trends. This indicator is built up from the relative popularity of three topic-related keywords. We propose a predictive model based on this specific Google index that is assessed relative to two alternative models: the first one includes the lagged variable, while the second one considers fatalities as a predictor. This comparative analysis is run in two different samples, whether the reported cases are a direct consequence of a violent direct or not. Our results show that the predictive model based on Google data significantly outperforms the other two models, regardless the sample and the forecast horizon. Then, using information gathered from Google queries may improve the allocation and management of resources and services to protect women against this form of violence and to improve risk assessment.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.