双线性对流扩散优化控制问题的特征有限元误差估计

IF 1.4 Q2 MATHEMATICS, APPLIED
Yuchun Hua, Yuelong Tang
{"title":"双线性对流扩散优化控制问题的特征有限元误差估计","authors":"Yuchun Hua,&nbsp;Yuelong Tang","doi":"10.1016/j.rinam.2024.100445","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates a fully discrete characteristic finite element approximation of bilinear unsteady convection–diffusion optimal control problems. The characteristic line method is used to treat the convection term and the finite element method is adopted to treat the diffusion term. The state and adjoint state are discretized by piecewise linear functions, the control is approximated by piecewise constant functions. A priori error estimates are derived for the state, adjoint state and control variables. Some numerical examples are provided to confirm our theoretical findings.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100445"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000153/pdfft?md5=05a003cd457f9c451488ff6f6f452007&pid=1-s2.0-S2590037424000153-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems\",\"authors\":\"Yuchun Hua,&nbsp;Yuelong Tang\",\"doi\":\"10.1016/j.rinam.2024.100445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates a fully discrete characteristic finite element approximation of bilinear unsteady convection–diffusion optimal control problems. The characteristic line method is used to treat the convection term and the finite element method is adopted to treat the diffusion term. The state and adjoint state are discretized by piecewise linear functions, the control is approximated by piecewise constant functions. A priori error estimates are derived for the state, adjoint state and control variables. Some numerical examples are provided to confirm our theoretical findings.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"22 \",\"pages\":\"Article 100445\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000153/pdfft?md5=05a003cd457f9c451488ff6f6f452007&pid=1-s2.0-S2590037424000153-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了双线性非稳态对流-扩散最优控制问题的全离散特征有限元近似。特征线法用于处理对流项,有限元法用于处理扩散项。状态和邻接状态由分片线性函数离散化,控制由分片常数函数近似化。得出了状态、邻接状态和控制变量的先验误差估计值。还提供了一些数值示例来证实我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems

This paper investigates a fully discrete characteristic finite element approximation of bilinear unsteady convection–diffusion optimal control problems. The characteristic line method is used to treat the convection term and the finite element method is adopted to treat the diffusion term. The state and adjoint state are discretized by piecewise linear functions, the control is approximated by piecewise constant functions. A priori error estimates are derived for the state, adjoint state and control variables. Some numerical examples are provided to confirm our theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信