{"title":"双线性对流扩散优化控制问题的特征有限元误差估计","authors":"Yuchun Hua, Yuelong Tang","doi":"10.1016/j.rinam.2024.100445","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates a fully discrete characteristic finite element approximation of bilinear unsteady convection–diffusion optimal control problems. The characteristic line method is used to treat the convection term and the finite element method is adopted to treat the diffusion term. The state and adjoint state are discretized by piecewise linear functions, the control is approximated by piecewise constant functions. A priori error estimates are derived for the state, adjoint state and control variables. Some numerical examples are provided to confirm our theoretical findings.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100445"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000153/pdfft?md5=05a003cd457f9c451488ff6f6f452007&pid=1-s2.0-S2590037424000153-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems\",\"authors\":\"Yuchun Hua, Yuelong Tang\",\"doi\":\"10.1016/j.rinam.2024.100445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates a fully discrete characteristic finite element approximation of bilinear unsteady convection–diffusion optimal control problems. The characteristic line method is used to treat the convection term and the finite element method is adopted to treat the diffusion term. The state and adjoint state are discretized by piecewise linear functions, the control is approximated by piecewise constant functions. A priori error estimates are derived for the state, adjoint state and control variables. Some numerical examples are provided to confirm our theoretical findings.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"22 \",\"pages\":\"Article 100445\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000153/pdfft?md5=05a003cd457f9c451488ff6f6f452007&pid=1-s2.0-S2590037424000153-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Error estimates of characteristic finite elements for bilinear convection–diffusion optimal control problems
This paper investigates a fully discrete characteristic finite element approximation of bilinear unsteady convection–diffusion optimal control problems. The characteristic line method is used to treat the convection term and the finite element method is adopted to treat the diffusion term. The state and adjoint state are discretized by piecewise linear functions, the control is approximated by piecewise constant functions. A priori error estimates are derived for the state, adjoint state and control variables. Some numerical examples are provided to confirm our theoretical findings.