L代数中交叉模块上交叉自相似性的表征

Pub Date : 2024-02-29 DOI:10.1093/jigpal/jzae003
Selim Çetin, Utku Gürdal
{"title":"L代数中交叉模块上交叉自相似性的表征","authors":"Selim Çetin, Utku Gürdal","doi":"10.1093/jigpal/jzae003","DOIUrl":null,"url":null,"abstract":"We introduce crossed modules in cycloids, as a generalization of cycloids, which are algebraic logical structures arising in the context of the quantum Yang–Baxter equation. As a spacial case, we in particular focus on the crossed modules of $L-$algebras. These types of crossed modules are exceptional, since the category of $L-$algebras is not protomodular, nor Barr-exact, but it nevertheless has natural semidirect products that have not been described in category theoretic terms. We identify crossed ideals of crossed module in $L-$algebras, and obtain some characteristics of these objects that are normally not encountered on crossed modules of groups or algebras. As a consequence, we characterize crossed self-similarity completely in terms of properties of $L-$algebras and the boundary map forming the crossed module.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of crossed self-similarity on crossed modules in L-algebras\",\"authors\":\"Selim Çetin, Utku Gürdal\",\"doi\":\"10.1093/jigpal/jzae003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce crossed modules in cycloids, as a generalization of cycloids, which are algebraic logical structures arising in the context of the quantum Yang–Baxter equation. As a spacial case, we in particular focus on the crossed modules of $L-$algebras. These types of crossed modules are exceptional, since the category of $L-$algebras is not protomodular, nor Barr-exact, but it nevertheless has natural semidirect products that have not been described in category theoretic terms. We identify crossed ideals of crossed module in $L-$algebras, and obtain some characteristics of these objects that are normally not encountered on crossed modules of groups or algebras. As a consequence, we characterize crossed self-similarity completely in terms of properties of $L-$algebras and the boundary map forming the crossed module.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了环状体中的交叉模块,作为环状体的广义化,环状体是量子杨-巴克斯特方程背景下产生的代数逻辑结构。作为一种空间情况,我们特别关注 $L-$ 算法的交叉模块。这些类型的交叉模块是特殊的,因为 $L-$ 算法的范畴不是原模态的,也不是巴尔精确的,但它却有天然的半直接积,而这些半直接积还没有用范畴论的术语来描述过。我们确定了 $L-$ 算法中交叉模块的交叉理想,并获得了这些对象的一些特征,而这些特征通常不会在群或代数的交叉模块中遇到。因此,我们完全可以用 $L-$ 算法和形成交叉模块的边界映射的性质来描述交叉自相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A characterization of crossed self-similarity on crossed modules in L-algebras
We introduce crossed modules in cycloids, as a generalization of cycloids, which are algebraic logical structures arising in the context of the quantum Yang–Baxter equation. As a spacial case, we in particular focus on the crossed modules of $L-$algebras. These types of crossed modules are exceptional, since the category of $L-$algebras is not protomodular, nor Barr-exact, but it nevertheless has natural semidirect products that have not been described in category theoretic terms. We identify crossed ideals of crossed module in $L-$algebras, and obtain some characteristics of these objects that are normally not encountered on crossed modules of groups or algebras. As a consequence, we characterize crossed self-similarity completely in terms of properties of $L-$algebras and the boundary map forming the crossed module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信