Muhammad Shahzeb, Mumtaz Muhammad Shah, Hamad ur Rahim, Jawad Ahmed Jan, Imran Ahmad, Rayan Khalil, Kamran Shehzad
{"title":"巴基斯坦跨印度河山脉和希尔山脉西延段中侏罗世萨马纳苏克地层的沉积和成岩研究:沉积学和地球化学综合方法","authors":"Muhammad Shahzeb, Mumtaz Muhammad Shah, Hamad ur Rahim, Jawad Ahmed Jan, Imran Ahmad, Rayan Khalil, Kamran Shehzad","doi":"10.1007/s13146-024-00937-6","DOIUrl":null,"url":null,"abstract":"<p>The middle Jurassic Samana Suk Formation is well exposed in Himalayan foreland fold and thrust belt forming a good hydrocarbon reservoir of the Indus Basin; however, the combined sedimentological and geochemical studies are not conducted so far. An integrated approach using field, petrographic, geochemical, and isotopic studies was used to better understand the depositional and diagenetic processes within the formation. The formation is predominantly composed of thin to medium-bedded limestone with intercalation of shale. Field observations reveal sedimentary and diagenetic features such as cross bedding, sole marks, ripple marks, convolute bedding, stylolites, dissolution marks and patchy dolomitization. Microfacies associations include mudflat microfacies associations (mudstone MF-1, dolo-mudstone MF-2), lagoonal microfacies associations (siliciclastic bio-packstone MF-3, peloidal bioclastic packstone MF-4, bioclastic wackestone MF-5, and peloidal wackestone MF-6), barrier/shoal microfacies association (peloidal grainstone MF-7, ooidal–peloidal bioclastic grainstone MF-8, ooidal grainstone MF-9, and bioclastic peloidal grainstone MF-10). The above-mentioned microfacies associations suggest the deposition in the ramp settings (mudflats, lagoonal and shoal). The diagenetic features include: micritization, mechanical/chemical compaction, dissolution, neomorphism, cementation, dolomitization and fracturing. Selective replacement of grain dominated facies represents fabric retentive replacive dolomite RD-I formed at the early phase, followed by matrix replacive dolomite RD-II. Late-stage diagenetic alteration is marked by fabric-destructive dolomite RD-III. Geochemical data show a consistent decrease in salinity from the early to late diagenetic phases characterized by elevated Na and K concentration and reduced Fe and Mn concentration. Furthermore, stable isotopic data of limestone and dolomite phases show non-depleted δ<sup>13</sup> C values ranging from + 0.26 to + 1.86‰ VPDB suggesting no external supply of carbon after the deposition of the carbonate units. The non-depleted δ<sup>18</sup> O values ranging from − 1.96 to − 0.45‰ VPDB of dolomite phases represents seawater signatures, and hence may have formed in surface processes of marine water in mudflat settings/evaporitic conditions. Paleogeographically, Samana Suk Formation exhibits similar depositional conditions with the western coastline of the Tethys.</p>","PeriodicalId":9612,"journal":{"name":"Carbonates and Evaporites","volume":"253 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depositional and diagenetic studies of the middle Jurassic Samana Suk Formation in the Trans Indus Ranges and western extension of Hill Ranges, Pakistan: an integrated sedimentological and geochemical approach\",\"authors\":\"Muhammad Shahzeb, Mumtaz Muhammad Shah, Hamad ur Rahim, Jawad Ahmed Jan, Imran Ahmad, Rayan Khalil, Kamran Shehzad\",\"doi\":\"10.1007/s13146-024-00937-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The middle Jurassic Samana Suk Formation is well exposed in Himalayan foreland fold and thrust belt forming a good hydrocarbon reservoir of the Indus Basin; however, the combined sedimentological and geochemical studies are not conducted so far. An integrated approach using field, petrographic, geochemical, and isotopic studies was used to better understand the depositional and diagenetic processes within the formation. The formation is predominantly composed of thin to medium-bedded limestone with intercalation of shale. Field observations reveal sedimentary and diagenetic features such as cross bedding, sole marks, ripple marks, convolute bedding, stylolites, dissolution marks and patchy dolomitization. Microfacies associations include mudflat microfacies associations (mudstone MF-1, dolo-mudstone MF-2), lagoonal microfacies associations (siliciclastic bio-packstone MF-3, peloidal bioclastic packstone MF-4, bioclastic wackestone MF-5, and peloidal wackestone MF-6), barrier/shoal microfacies association (peloidal grainstone MF-7, ooidal–peloidal bioclastic grainstone MF-8, ooidal grainstone MF-9, and bioclastic peloidal grainstone MF-10). The above-mentioned microfacies associations suggest the deposition in the ramp settings (mudflats, lagoonal and shoal). The diagenetic features include: micritization, mechanical/chemical compaction, dissolution, neomorphism, cementation, dolomitization and fracturing. Selective replacement of grain dominated facies represents fabric retentive replacive dolomite RD-I formed at the early phase, followed by matrix replacive dolomite RD-II. Late-stage diagenetic alteration is marked by fabric-destructive dolomite RD-III. Geochemical data show a consistent decrease in salinity from the early to late diagenetic phases characterized by elevated Na and K concentration and reduced Fe and Mn concentration. Furthermore, stable isotopic data of limestone and dolomite phases show non-depleted δ<sup>13</sup> C values ranging from + 0.26 to + 1.86‰ VPDB suggesting no external supply of carbon after the deposition of the carbonate units. The non-depleted δ<sup>18</sup> O values ranging from − 1.96 to − 0.45‰ VPDB of dolomite phases represents seawater signatures, and hence may have formed in surface processes of marine water in mudflat settings/evaporitic conditions. Paleogeographically, Samana Suk Formation exhibits similar depositional conditions with the western coastline of the Tethys.</p>\",\"PeriodicalId\":9612,\"journal\":{\"name\":\"Carbonates and Evaporites\",\"volume\":\"253 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbonates and Evaporites\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13146-024-00937-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbonates and Evaporites","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13146-024-00937-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
Depositional and diagenetic studies of the middle Jurassic Samana Suk Formation in the Trans Indus Ranges and western extension of Hill Ranges, Pakistan: an integrated sedimentological and geochemical approach
The middle Jurassic Samana Suk Formation is well exposed in Himalayan foreland fold and thrust belt forming a good hydrocarbon reservoir of the Indus Basin; however, the combined sedimentological and geochemical studies are not conducted so far. An integrated approach using field, petrographic, geochemical, and isotopic studies was used to better understand the depositional and diagenetic processes within the formation. The formation is predominantly composed of thin to medium-bedded limestone with intercalation of shale. Field observations reveal sedimentary and diagenetic features such as cross bedding, sole marks, ripple marks, convolute bedding, stylolites, dissolution marks and patchy dolomitization. Microfacies associations include mudflat microfacies associations (mudstone MF-1, dolo-mudstone MF-2), lagoonal microfacies associations (siliciclastic bio-packstone MF-3, peloidal bioclastic packstone MF-4, bioclastic wackestone MF-5, and peloidal wackestone MF-6), barrier/shoal microfacies association (peloidal grainstone MF-7, ooidal–peloidal bioclastic grainstone MF-8, ooidal grainstone MF-9, and bioclastic peloidal grainstone MF-10). The above-mentioned microfacies associations suggest the deposition in the ramp settings (mudflats, lagoonal and shoal). The diagenetic features include: micritization, mechanical/chemical compaction, dissolution, neomorphism, cementation, dolomitization and fracturing. Selective replacement of grain dominated facies represents fabric retentive replacive dolomite RD-I formed at the early phase, followed by matrix replacive dolomite RD-II. Late-stage diagenetic alteration is marked by fabric-destructive dolomite RD-III. Geochemical data show a consistent decrease in salinity from the early to late diagenetic phases characterized by elevated Na and K concentration and reduced Fe and Mn concentration. Furthermore, stable isotopic data of limestone and dolomite phases show non-depleted δ13 C values ranging from + 0.26 to + 1.86‰ VPDB suggesting no external supply of carbon after the deposition of the carbonate units. The non-depleted δ18 O values ranging from − 1.96 to − 0.45‰ VPDB of dolomite phases represents seawater signatures, and hence may have formed in surface processes of marine water in mudflat settings/evaporitic conditions. Paleogeographically, Samana Suk Formation exhibits similar depositional conditions with the western coastline of the Tethys.
期刊介绍:
Established in 1979, the international journal Carbonates and Evaporites provides a forum for the exchange of concepts, research and applications on all aspects of carbonate and evaporite geology. This includes the origin and stratigraphy of carbonate and evaporite rocks and issues unique to these rock types: weathering phenomena, notably karst; engineering and environmental issues; mining and minerals extraction; and caves and permeability.
The journal publishes current information in the form of original peer-reviewed articles, invited papers, and reports from meetings, editorials, and book and software reviews. The target audience includes professional geologists, hydrogeologists, engineers, geochemists, and other researchers, libraries, and educational centers.