{"title":"QScatter:快速预测电子激光散射中粒子分布的数值框架","authors":"Óscar Amaro, Marija Vranic","doi":"10.1088/1361-6587/ad2975","DOIUrl":null,"url":null,"abstract":"The new generation of multi-PetaWatt laser facilities will allow tests of strong field quantum electrodynamics (QED), as well as provide an opportunity for novel photon and lepton sources. The first experiments are planned to study the (nearly) head-on scattering of intense, focused laser pulses with either relativistic electron beams or high-energy photon sources. In this work, we present a numerical framework that can provide fast predictions of the asymptotic particle and photon distributions after the scattering. The method detailed in this manuscript can include multiple features such as spatial and temporal misalignment between the laser and the scattering beam, broadband electron beams, and beam divergence. The expected mean energy, energy spread, divergence or other observables are calculated by combining an analytical description and numerical integration. This method can provide results within minutes on a personal computer, which would otherwise require full-scale 3D QED-PIC simulations using thousands of cores. The model, which has been compiled into an open-source code <monospace>QScatter</monospace>, may be used to support the analysis of large-size data sets from high-repetition rate experiments, leveraging its speed for optimization or reconstruction of experimental parameters.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QScatter: numerical framework for fast prediction of particle distributions in electron-laser scattering\",\"authors\":\"Óscar Amaro, Marija Vranic\",\"doi\":\"10.1088/1361-6587/ad2975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new generation of multi-PetaWatt laser facilities will allow tests of strong field quantum electrodynamics (QED), as well as provide an opportunity for novel photon and lepton sources. The first experiments are planned to study the (nearly) head-on scattering of intense, focused laser pulses with either relativistic electron beams or high-energy photon sources. In this work, we present a numerical framework that can provide fast predictions of the asymptotic particle and photon distributions after the scattering. The method detailed in this manuscript can include multiple features such as spatial and temporal misalignment between the laser and the scattering beam, broadband electron beams, and beam divergence. The expected mean energy, energy spread, divergence or other observables are calculated by combining an analytical description and numerical integration. This method can provide results within minutes on a personal computer, which would otherwise require full-scale 3D QED-PIC simulations using thousands of cores. The model, which has been compiled into an open-source code <monospace>QScatter</monospace>, may be used to support the analysis of large-size data sets from high-repetition rate experiments, leveraging its speed for optimization or reconstruction of experimental parameters.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad2975\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad2975","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
QScatter: numerical framework for fast prediction of particle distributions in electron-laser scattering
The new generation of multi-PetaWatt laser facilities will allow tests of strong field quantum electrodynamics (QED), as well as provide an opportunity for novel photon and lepton sources. The first experiments are planned to study the (nearly) head-on scattering of intense, focused laser pulses with either relativistic electron beams or high-energy photon sources. In this work, we present a numerical framework that can provide fast predictions of the asymptotic particle and photon distributions after the scattering. The method detailed in this manuscript can include multiple features such as spatial and temporal misalignment between the laser and the scattering beam, broadband electron beams, and beam divergence. The expected mean energy, energy spread, divergence or other observables are calculated by combining an analytical description and numerical integration. This method can provide results within minutes on a personal computer, which would otherwise require full-scale 3D QED-PIC simulations using thousands of cores. The model, which has been compiled into an open-source code QScatter, may be used to support the analysis of large-size data sets from high-repetition rate experiments, leveraging its speed for optimization or reconstruction of experimental parameters.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.