{"title":"MHGCN+:多重异构图卷积网络","authors":"Chaofan Fu, Pengyang Yu, Yanwei Yu, Chao Huang, Zhongying Zhao, Junyu Dong","doi":"10.1145/3650046","DOIUrl":null,"url":null,"abstract":"<p>Heterogeneous graph convolutional networks have gained great popularity in tackling various network analytical tasks on heterogeneous graph data, ranging from link prediction to node classification. However, most existing works ignore the relation heterogeneity with multiplex networks between multi-typed nodes and the different importance of relations in meta-paths for node embedding, which can hardly capture the heterogeneous structure signals across different relations. To tackle this challenge, this work proposes a <underline><b>M</b></underline>ultiplex <underline><b>H</b></underline>eterogeneous <underline><b>G</b></underline>raph <underline><b>C</b></underline>onvolutional <underline><b>N</b></underline>etwork (MHGCN+) for multiplex heterogeneous network embedding. Our MHGCN+ can automatically learn the useful heterogeneous meta-path interactions of different lengths with different importance in multiplex heterogeneous networks through multi-layer convolution aggregation. Additionally, we effectively integrate both multi-relation structural signals and attribute semantics into the learned node embeddings with both unsupervised and semi-supervised learning paradigms. Extensive experiments on seven real-world datasets with various network analytical tasks demonstrate the significant superiority of MHGCN+ against state-of-the-art embedding baselines in terms of all evaluation metrics. The source code of our method is available at: https://github.com/FuChF/MHGCN-plus.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MHGCN+: Multiplex Heterogeneous Graph Convolutional Network\",\"authors\":\"Chaofan Fu, Pengyang Yu, Yanwei Yu, Chao Huang, Zhongying Zhao, Junyu Dong\",\"doi\":\"10.1145/3650046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterogeneous graph convolutional networks have gained great popularity in tackling various network analytical tasks on heterogeneous graph data, ranging from link prediction to node classification. However, most existing works ignore the relation heterogeneity with multiplex networks between multi-typed nodes and the different importance of relations in meta-paths for node embedding, which can hardly capture the heterogeneous structure signals across different relations. To tackle this challenge, this work proposes a <underline><b>M</b></underline>ultiplex <underline><b>H</b></underline>eterogeneous <underline><b>G</b></underline>raph <underline><b>C</b></underline>onvolutional <underline><b>N</b></underline>etwork (MHGCN+) for multiplex heterogeneous network embedding. Our MHGCN+ can automatically learn the useful heterogeneous meta-path interactions of different lengths with different importance in multiplex heterogeneous networks through multi-layer convolution aggregation. Additionally, we effectively integrate both multi-relation structural signals and attribute semantics into the learned node embeddings with both unsupervised and semi-supervised learning paradigms. Extensive experiments on seven real-world datasets with various network analytical tasks demonstrate the significant superiority of MHGCN+ against state-of-the-art embedding baselines in terms of all evaluation metrics. The source code of our method is available at: https://github.com/FuChF/MHGCN-plus.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3650046\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650046","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Heterogeneous graph convolutional networks have gained great popularity in tackling various network analytical tasks on heterogeneous graph data, ranging from link prediction to node classification. However, most existing works ignore the relation heterogeneity with multiplex networks between multi-typed nodes and the different importance of relations in meta-paths for node embedding, which can hardly capture the heterogeneous structure signals across different relations. To tackle this challenge, this work proposes a Multiplex Heterogeneous Graph Convolutional Network (MHGCN+) for multiplex heterogeneous network embedding. Our MHGCN+ can automatically learn the useful heterogeneous meta-path interactions of different lengths with different importance in multiplex heterogeneous networks through multi-layer convolution aggregation. Additionally, we effectively integrate both multi-relation structural signals and attribute semantics into the learned node embeddings with both unsupervised and semi-supervised learning paradigms. Extensive experiments on seven real-world datasets with various network analytical tasks demonstrate the significant superiority of MHGCN+ against state-of-the-art embedding baselines in terms of all evaluation metrics. The source code of our method is available at: https://github.com/FuChF/MHGCN-plus.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.