Yunji Liang, Nengzhen Chen, Zhiwen Yu, Lei Tang, Hongkai Yu, Bin Guo, Daniel Dajun Zeng
{"title":"学习跨模态交互,实现自主驾驶的鲁棒深度感知","authors":"Yunji Liang, Nengzhen Chen, Zhiwen Yu, Lei Tang, Hongkai Yu, Bin Guo, Daniel Dajun Zeng","doi":"10.1145/3650039","DOIUrl":null,"url":null,"abstract":"<p>As one of the fundamental tasks of autonomous driving, depth perception aims to perceive physical objects in three dimensions and to judge their distances away from the ego vehicle. Although great efforts have been made for depth perception, LiDAR-based and camera-based solutions have limitations with low accuracy and poor robustness for noise input. With the integration of monocular cameras and LiDAR sensors in autonomous vehicles, in this paper, we introduce a two-stream architecture to learn the modality interaction representation under the guidance of an image reconstruction task to compensate for the deficiencies of each modality in a parallel manner. Specifically, in the two-stream architecture, the multi-scale cross-modality interactions are preserved via a cascading interaction network under the guidance of the reconstruction task. Next, the shared representation of modality interaction is integrated to infer the dense depth map due to the complementary and the heterogeneity of the two modalities. We evaluated the proposed solution on the KITTI dataset and CALAR synthetic dataset. Our experimental results show that learning the coupled interaction of modalities under the guidance of an auxiliary task can lead to significant performance improvements. Furthermore, our approach is competitive against the state-of-the-art models and robust against the noisy input. The source code is available at <i>https://github.com/tonyFengye/Code/tree/master\n</i>.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Cross-Modality Interaction for Robust Depth Perception of Autonomous Driving\",\"authors\":\"Yunji Liang, Nengzhen Chen, Zhiwen Yu, Lei Tang, Hongkai Yu, Bin Guo, Daniel Dajun Zeng\",\"doi\":\"10.1145/3650039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As one of the fundamental tasks of autonomous driving, depth perception aims to perceive physical objects in three dimensions and to judge their distances away from the ego vehicle. Although great efforts have been made for depth perception, LiDAR-based and camera-based solutions have limitations with low accuracy and poor robustness for noise input. With the integration of monocular cameras and LiDAR sensors in autonomous vehicles, in this paper, we introduce a two-stream architecture to learn the modality interaction representation under the guidance of an image reconstruction task to compensate for the deficiencies of each modality in a parallel manner. Specifically, in the two-stream architecture, the multi-scale cross-modality interactions are preserved via a cascading interaction network under the guidance of the reconstruction task. Next, the shared representation of modality interaction is integrated to infer the dense depth map due to the complementary and the heterogeneity of the two modalities. We evaluated the proposed solution on the KITTI dataset and CALAR synthetic dataset. Our experimental results show that learning the coupled interaction of modalities under the guidance of an auxiliary task can lead to significant performance improvements. Furthermore, our approach is competitive against the state-of-the-art models and robust against the noisy input. The source code is available at <i>https://github.com/tonyFengye/Code/tree/master\\n</i>.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3650039\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650039","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning Cross-Modality Interaction for Robust Depth Perception of Autonomous Driving
As one of the fundamental tasks of autonomous driving, depth perception aims to perceive physical objects in three dimensions and to judge their distances away from the ego vehicle. Although great efforts have been made for depth perception, LiDAR-based and camera-based solutions have limitations with low accuracy and poor robustness for noise input. With the integration of monocular cameras and LiDAR sensors in autonomous vehicles, in this paper, we introduce a two-stream architecture to learn the modality interaction representation under the guidance of an image reconstruction task to compensate for the deficiencies of each modality in a parallel manner. Specifically, in the two-stream architecture, the multi-scale cross-modality interactions are preserved via a cascading interaction network under the guidance of the reconstruction task. Next, the shared representation of modality interaction is integrated to infer the dense depth map due to the complementary and the heterogeneity of the two modalities. We evaluated the proposed solution on the KITTI dataset and CALAR synthetic dataset. Our experimental results show that learning the coupled interaction of modalities under the guidance of an auxiliary task can lead to significant performance improvements. Furthermore, our approach is competitive against the state-of-the-art models and robust against the noisy input. The source code is available at https://github.com/tonyFengye/Code/tree/master
.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.