一类非线性问题的自适应多级算法

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Dongho Kim, Eun-Jae Park, Boyoon Seo
{"title":"一类非线性问题的自适应多级算法","authors":"Dongho Kim, Eun-Jae Park, Boyoon Seo","doi":"10.1515/cmam-2023-0088","DOIUrl":null,"url":null,"abstract":"In this article, we propose an adaptive mesh-refining based on the multi-level algorithm and derive a unified a posteriori error estimate for a class of nonlinear problems. We have shown that the multi-level algorithm on adaptive meshes retains quadratic convergence of Newton’s method across different mesh levels, which is numerically validated. Our framework facilitates to use the general theory established for a linear problem associated with given nonlinear equations. In particular, existing a posteriori error estimates for the linear problem can be utilized to find reliable error estimators for the given nonlinear problem. As applications of our theory, we consider the pseudostress-velocity formulation of Navier–Stokes equations and the standard Galerkin formulation of semilinear elliptic equations. Reliable and efficient a posteriori error estimators for both approximations are derived. Finally, several numerical examples are presented to test the performance of the algorithm and validity of the theory developed.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"241 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Multi-level Algorithm for a Class of Nonlinear Problems\",\"authors\":\"Dongho Kim, Eun-Jae Park, Boyoon Seo\",\"doi\":\"10.1515/cmam-2023-0088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose an adaptive mesh-refining based on the multi-level algorithm and derive a unified a posteriori error estimate for a class of nonlinear problems. We have shown that the multi-level algorithm on adaptive meshes retains quadratic convergence of Newton’s method across different mesh levels, which is numerically validated. Our framework facilitates to use the general theory established for a linear problem associated with given nonlinear equations. In particular, existing a posteriori error estimates for the linear problem can be utilized to find reliable error estimators for the given nonlinear problem. As applications of our theory, we consider the pseudostress-velocity formulation of Navier–Stokes equations and the standard Galerkin formulation of semilinear elliptic equations. Reliable and efficient a posteriori error estimators for both approximations are derived. Finally, several numerical examples are presented to test the performance of the algorithm and validity of the theory developed.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"241 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2023-0088\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0088","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于多级算法的自适应网格细化方法,并推导出一类非线性问题的统一后验误差估计。我们证明了自适应网格上的多级算法在不同网格级数上保持了牛顿法的二次收敛性,这在数值上得到了验证。我们的框架有助于使用为与给定非线性方程相关的线性问题建立的一般理论。特别是,可以利用线性问题的现有后验误差估计,为给定的非线性问题找到可靠的误差估计值。作为我们理论的应用,我们考虑了 Navier-Stokes 方程的伪应力-速度公式和半线性椭圆方程的标准 Galerkin 公式。我们推导出了这两种近似方法可靠、高效的后验误差估计值。最后,介绍了几个数值示例,以检验算法的性能和所开发理论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Multi-level Algorithm for a Class of Nonlinear Problems
In this article, we propose an adaptive mesh-refining based on the multi-level algorithm and derive a unified a posteriori error estimate for a class of nonlinear problems. We have shown that the multi-level algorithm on adaptive meshes retains quadratic convergence of Newton’s method across different mesh levels, which is numerically validated. Our framework facilitates to use the general theory established for a linear problem associated with given nonlinear equations. In particular, existing a posteriori error estimates for the linear problem can be utilized to find reliable error estimators for the given nonlinear problem. As applications of our theory, we consider the pseudostress-velocity formulation of Navier–Stokes equations and the standard Galerkin formulation of semilinear elliptic equations. Reliable and efficient a posteriori error estimators for both approximations are derived. Finally, several numerical examples are presented to test the performance of the algorithm and validity of the theory developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信