周期势中的孤簇波:形成、传播和孤子介导的粒子传输

Alexander P. Antonov, Artem Ryabov, Philipp Maass
{"title":"周期势中的孤簇波:形成、传播和孤子介导的粒子传输","authors":"Alexander P. Antonov, Artem Ryabov, Philipp Maass","doi":"arxiv-2402.17469","DOIUrl":null,"url":null,"abstract":"Transport processes in crowded periodic structures are often mediated by\ncooperative movements of particles forming clusters. Recent theoretical and\nexperimental studies of driven Brownian motion of hard spheres showed that\ncluster-mediated transport in one-dimensional periodic potentials can proceed\nin form of solitary waves. We here give a comprehensive description of these\nsolitons. Fundamental for our analysis is a static presoliton state, which is\nformed by a periodic arrangements of basic stable clusters. Their size follows\nfrom a geometric principle of minimum free space. Adding one particle to the\npresoliton state gives rise to solitons. We derive the minimal number of\nparticles needed for soliton formation, number of solitons at larger particle\nnumbers, soliton velocities and soliton-mediated particle currents. Incomplete\nrelaxations of the basic clusters are responsible for an effective repulsive\nsoliton-soliton interaction seen in measurements. Our results provide a\ntheoretical basis for describing experiments on cluster-mediated particle\ntransport in periodic potentials.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solitary cluster waves in periodic potentials: Formation, propagation, and soliton-mediated particle transport\",\"authors\":\"Alexander P. Antonov, Artem Ryabov, Philipp Maass\",\"doi\":\"arxiv-2402.17469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transport processes in crowded periodic structures are often mediated by\\ncooperative movements of particles forming clusters. Recent theoretical and\\nexperimental studies of driven Brownian motion of hard spheres showed that\\ncluster-mediated transport in one-dimensional periodic potentials can proceed\\nin form of solitary waves. We here give a comprehensive description of these\\nsolitons. Fundamental for our analysis is a static presoliton state, which is\\nformed by a periodic arrangements of basic stable clusters. Their size follows\\nfrom a geometric principle of minimum free space. Adding one particle to the\\npresoliton state gives rise to solitons. We derive the minimal number of\\nparticles needed for soliton formation, number of solitons at larger particle\\nnumbers, soliton velocities and soliton-mediated particle currents. Incomplete\\nrelaxations of the basic clusters are responsible for an effective repulsive\\nsoliton-soliton interaction seen in measurements. Our results provide a\\ntheoretical basis for describing experiments on cluster-mediated particle\\ntransport in periodic potentials.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.17469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.17469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拥挤的周期性结构中的输运过程通常是由形成团簇的粒子的合作运动介导的。最近对硬球驱动布朗运动的理论和实验研究表明,在一维周期势中,由粒子群介导的输运可以以孤子波的形式进行。我们在此对这些孤子进行全面描述。我们分析的基础是静态的前孤立子状态,它是由基本稳定团簇的周期性排列形成的。它们的大小遵循最小自由空间的几何原理。在前孤子态中增加一个粒子就会产生孤子。我们推导出了形成孤子所需的最小粒子数、较大粒子数下的孤子数、孤子速度和以孤子为媒介的粒子流。基本簇的不完全松弛是测量中看到的有效排斥孤子-孤子相互作用的原因。我们的研究结果为描述周期势中团簇介导的粒子传输实验提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solitary cluster waves in periodic potentials: Formation, propagation, and soliton-mediated particle transport
Transport processes in crowded periodic structures are often mediated by cooperative movements of particles forming clusters. Recent theoretical and experimental studies of driven Brownian motion of hard spheres showed that cluster-mediated transport in one-dimensional periodic potentials can proceed in form of solitary waves. We here give a comprehensive description of these solitons. Fundamental for our analysis is a static presoliton state, which is formed by a periodic arrangements of basic stable clusters. Their size follows from a geometric principle of minimum free space. Adding one particle to the presoliton state gives rise to solitons. We derive the minimal number of particles needed for soliton formation, number of solitons at larger particle numbers, soliton velocities and soliton-mediated particle currents. Incomplete relaxations of the basic clusters are responsible for an effective repulsive soliton-soliton interaction seen in measurements. Our results provide a theoretical basis for describing experiments on cluster-mediated particle transport in periodic potentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信