在电磁波定位方面,非周期性比无序性更有效 [特邀]

IF 2.8 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Luis A. Razo-López, Geoffroy J. Aubry, Felipe A. Pinheiro, and Fabrice Mortessagne
{"title":"在电磁波定位方面,非周期性比无序性更有效 [特邀]","authors":"Luis A. Razo-López, Geoffroy J. Aubry, Felipe A. Pinheiro, and Fabrice Mortessagne","doi":"10.1364/ome.514886","DOIUrl":null,"url":null,"abstract":"Strong localization of electromagnetic waves in 3D has never been experimentally achieved in uncorrelated disordered systems. By going beyond the paradigm of disordered systems, this goal has been recently reached in deterministic aperiodic planar Vogel spiral arrays in the microwave regime. Here we present a comprehensive description of the experimental details that have been used to observe electromagnetic localization in Vogel spirals beyond 2D. By providing an experimental roadmap to describe microwave transport in Vogel spirals we introduce a novel system platform to demonstrate electromagnetic localization in 3D that outperforms traditional disordered systems for that purpose.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aperiodicity is more effective than disorder in localizing electromagnetic waves [Invited]\",\"authors\":\"Luis A. Razo-López, Geoffroy J. Aubry, Felipe A. Pinheiro, and Fabrice Mortessagne\",\"doi\":\"10.1364/ome.514886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strong localization of electromagnetic waves in 3D has never been experimentally achieved in uncorrelated disordered systems. By going beyond the paradigm of disordered systems, this goal has been recently reached in deterministic aperiodic planar Vogel spiral arrays in the microwave regime. Here we present a comprehensive description of the experimental details that have been used to observe electromagnetic localization in Vogel spirals beyond 2D. By providing an experimental roadmap to describe microwave transport in Vogel spirals we introduce a novel system platform to demonstrate electromagnetic localization in 3D that outperforms traditional disordered systems for that purpose.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.514886\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.514886","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在非相关无序系统中,从未在实验中实现过三维电磁波的强定位。通过超越无序系统的范例,这一目标最近在确定性非周期性平面 Vogel 螺旋阵列的微波系统中得以实现。在此,我们将全面介绍用于观测二维以上 Vogel 螺旋中电磁局域化的实验细节。通过提供描述 Vogel 螺旋中微波传输的实验路线图,我们引入了一个新颖的系统平台来演示三维电磁局域化,其效果优于传统的无序系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aperiodicity is more effective than disorder in localizing electromagnetic waves [Invited]
Strong localization of electromagnetic waves in 3D has never been experimentally achieved in uncorrelated disordered systems. By going beyond the paradigm of disordered systems, this goal has been recently reached in deterministic aperiodic planar Vogel spiral arrays in the microwave regime. Here we present a comprehensive description of the experimental details that have been used to observe electromagnetic localization in Vogel spirals beyond 2D. By providing an experimental roadmap to describe microwave transport in Vogel spirals we introduce a novel system platform to demonstrate electromagnetic localization in 3D that outperforms traditional disordered systems for that purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Materials Express
Optical Materials Express MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
5.50
自引率
3.60%
发文量
377
审稿时长
1.5 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to: Artificially engineered optical structures Biomaterials Optical detector materials Optical storage media Materials for integrated optics Nonlinear optical materials Laser materials Metamaterials Nanomaterials Organics and polymers Soft materials IR materials Materials for fiber optics Hybrid technologies Materials for quantum photonics Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信