B. R. Baali, M. T. Gherbi, A. Nour, J. B. Casimir, R. Saci, S. Aguib, N. Attia, C. Aribi
{"title":"阿尔法、剑麻和混合阿尔法/剑麻纤维缎布增强环氧树脂的机械性能","authors":"B. R. Baali, M. T. Gherbi, A. Nour, J. B. Casimir, R. Saci, S. Aguib, N. Attia, C. Aribi","doi":"10.1007/s11029-024-10180-8","DOIUrl":null,"url":null,"abstract":"<p>The mechanical behavior of composites, made of an epoxy resin matrix reinforced by 30 and 40% of a satin cloth from long Alfa, sisal and hybrid Alfa/sisal fibers was studied. The fibers are obtained by extraction with elimination of binders such as pectins and lignin. For each type of fibers, appropriate and optimal chemical and thermal treatments were conducted within NaOH solution, to enhance both the fiber surface quality and the interfacial bonding between fibers and matrix. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and chemical decomposition of treated and untreated fibers lead to prove the treatment efficiency. The thermogravimetric (TGA) and differential thermogravimetric (DTG) analyses showed better thermal stability. Differential scanning calorimetry (DSC) made it possible to quantify the enthalpy changes which showed an increase in the amount of heat as a function of the increase in weight fraction of natural fibers. The endothermic reaction of the composites studied containing 30 wt% fiber reinforcement was less than that containing 40 wt% fiber reinforcement. The composite materials were produced by vacuum assisted resin transfer molding (VARTM) method due to hydrophilic nature of the fibers. The results of static tests were compared to those of pure epoxy resin. It showed a significant increase for 40 wt% woven A1lfa/epoxy of about 333, 113, and 81% in tension, 3-points bending and compression tests respectively. SEM morphology analysis revealed good interfacial adhesion between the treated fibers and the matrix.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"17 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Properties of Alfa, Sisal, and Hybrid Alfa/Sisal Fiber Satin Cloth Reinforced Epoxy\",\"authors\":\"B. R. Baali, M. T. Gherbi, A. Nour, J. B. Casimir, R. Saci, S. Aguib, N. Attia, C. Aribi\",\"doi\":\"10.1007/s11029-024-10180-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanical behavior of composites, made of an epoxy resin matrix reinforced by 30 and 40% of a satin cloth from long Alfa, sisal and hybrid Alfa/sisal fibers was studied. The fibers are obtained by extraction with elimination of binders such as pectins and lignin. For each type of fibers, appropriate and optimal chemical and thermal treatments were conducted within NaOH solution, to enhance both the fiber surface quality and the interfacial bonding between fibers and matrix. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and chemical decomposition of treated and untreated fibers lead to prove the treatment efficiency. The thermogravimetric (TGA) and differential thermogravimetric (DTG) analyses showed better thermal stability. Differential scanning calorimetry (DSC) made it possible to quantify the enthalpy changes which showed an increase in the amount of heat as a function of the increase in weight fraction of natural fibers. The endothermic reaction of the composites studied containing 30 wt% fiber reinforcement was less than that containing 40 wt% fiber reinforcement. The composite materials were produced by vacuum assisted resin transfer molding (VARTM) method due to hydrophilic nature of the fibers. The results of static tests were compared to those of pure epoxy resin. It showed a significant increase for 40 wt% woven A1lfa/epoxy of about 333, 113, and 81% in tension, 3-points bending and compression tests respectively. SEM morphology analysis revealed good interfacial adhesion between the treated fibers and the matrix.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-024-10180-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10180-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Mechanical Properties of Alfa, Sisal, and Hybrid Alfa/Sisal Fiber Satin Cloth Reinforced Epoxy
The mechanical behavior of composites, made of an epoxy resin matrix reinforced by 30 and 40% of a satin cloth from long Alfa, sisal and hybrid Alfa/sisal fibers was studied. The fibers are obtained by extraction with elimination of binders such as pectins and lignin. For each type of fibers, appropriate and optimal chemical and thermal treatments were conducted within NaOH solution, to enhance both the fiber surface quality and the interfacial bonding between fibers and matrix. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and chemical decomposition of treated and untreated fibers lead to prove the treatment efficiency. The thermogravimetric (TGA) and differential thermogravimetric (DTG) analyses showed better thermal stability. Differential scanning calorimetry (DSC) made it possible to quantify the enthalpy changes which showed an increase in the amount of heat as a function of the increase in weight fraction of natural fibers. The endothermic reaction of the composites studied containing 30 wt% fiber reinforcement was less than that containing 40 wt% fiber reinforcement. The composite materials were produced by vacuum assisted resin transfer molding (VARTM) method due to hydrophilic nature of the fibers. The results of static tests were compared to those of pure epoxy resin. It showed a significant increase for 40 wt% woven A1lfa/epoxy of about 333, 113, and 81% in tension, 3-points bending and compression tests respectively. SEM morphology analysis revealed good interfacial adhesion between the treated fibers and the matrix.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.