图同态博弈的普遍性与量子着色问题

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Samuel J. Harris
{"title":"图同态博弈的普遍性与量子着色问题","authors":"Samuel J. Harris","doi":"10.1007/s00023-024-01422-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show that quantum graph parameters for finite, simple, undirected graphs encode winning strategies for all possible synchronous non-local games. Given a synchronous game <span>\\(\\mathcal {G}=(I,O,\\lambda )\\)</span> with <span>\\(|I|=n\\)</span> and <span>\\(|O|=k\\)</span>, we demonstrate what we call a weak <span>\\(*\\)</span>-equivalence between <span>\\(\\mathcal {G}\\)</span> and a 3-coloring game on a graph with at most <span>\\(3+n+9n(k-2)+6|\\lambda ^{-1}(\\{0\\})|\\)</span> vertices, strengthening and simplifying work implied by Ji [16] for winning quantum strategies for synchronous non-local games. As an application, we obtain a quantum version of Lovász’s reduction [21] of the <i>k</i>-coloring problem for a graph <i>G</i> with <i>n</i> vertices and <i>m</i> edges to the 3-coloring problem for a graph with <span>\\(3+n+9n(k-2)+6mk\\)</span> vertices. Moreover, winning strategies for a synchronous game <span>\\(\\mathcal {G}\\)</span> can be transformed into winning strategies for an associated graph coloring game, where the strategies exhibit perfect zero knowledge for an honest verifier. We also show that, for “graph of the game” <span>\\(X(\\mathcal {G})\\)</span> associated with <span>\\(\\mathcal {G}\\)</span> from Atserias et al. [1], the independence number game <span>\\(\\text {Hom}(K_{|I|},\\overline{X(\\mathcal {G})})\\)</span> is hereditarily <span>\\(*\\)</span>-equivalent to <span>\\(\\mathcal {G}\\)</span>, so that the possibility of winning strategies is the same in both games for all models, except the game algebra. Thus, the quantum versions of the chromatic number, independence number and clique number encode winning strategies for all synchronous games in all quantum models.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 10","pages":"4321 - 4356"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universality of Graph Homomorphism Games and the Quantum Coloring Problem\",\"authors\":\"Samuel J. Harris\",\"doi\":\"10.1007/s00023-024-01422-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that quantum graph parameters for finite, simple, undirected graphs encode winning strategies for all possible synchronous non-local games. Given a synchronous game <span>\\\\(\\\\mathcal {G}=(I,O,\\\\lambda )\\\\)</span> with <span>\\\\(|I|=n\\\\)</span> and <span>\\\\(|O|=k\\\\)</span>, we demonstrate what we call a weak <span>\\\\(*\\\\)</span>-equivalence between <span>\\\\(\\\\mathcal {G}\\\\)</span> and a 3-coloring game on a graph with at most <span>\\\\(3+n+9n(k-2)+6|\\\\lambda ^{-1}(\\\\{0\\\\})|\\\\)</span> vertices, strengthening and simplifying work implied by Ji [16] for winning quantum strategies for synchronous non-local games. As an application, we obtain a quantum version of Lovász’s reduction [21] of the <i>k</i>-coloring problem for a graph <i>G</i> with <i>n</i> vertices and <i>m</i> edges to the 3-coloring problem for a graph with <span>\\\\(3+n+9n(k-2)+6mk\\\\)</span> vertices. Moreover, winning strategies for a synchronous game <span>\\\\(\\\\mathcal {G}\\\\)</span> can be transformed into winning strategies for an associated graph coloring game, where the strategies exhibit perfect zero knowledge for an honest verifier. We also show that, for “graph of the game” <span>\\\\(X(\\\\mathcal {G})\\\\)</span> associated with <span>\\\\(\\\\mathcal {G}\\\\)</span> from Atserias et al. [1], the independence number game <span>\\\\(\\\\text {Hom}(K_{|I|},\\\\overline{X(\\\\mathcal {G})})\\\\)</span> is hereditarily <span>\\\\(*\\\\)</span>-equivalent to <span>\\\\(\\\\mathcal {G}\\\\)</span>, so that the possibility of winning strategies is the same in both games for all models, except the game algebra. Thus, the quantum versions of the chromatic number, independence number and clique number encode winning strategies for all synchronous games in all quantum models.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 10\",\"pages\":\"4321 - 4356\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01422-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01422-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,有限、简单、无向图的量子图参数编码了所有可能的同步非局部博弈的获胜策略。给定一个同步博弈 \(mathcal {G}=(I,O,λ )\) with \(|I|=n\) and \(|O|=k\)、我们证明了在(\(|I|=n\ 和(|O|=k\ )的)\(\mathcal {G}\)和一个顶点最多为\(3+n+9n(k-2)+6|\lambda ^{-1}(\{0\})|)的图上的3-着色博弈之间存在我们所说的弱(*\)-等价性、加强并简化了 Ji [16] 所暗示的同步非局部博弈量子获胜策略的工作。作为一个应用,我们得到了 Lovász 将有 n 个顶点和 m 条边的图 G 的 k-着色问题简化为有\(3+n+9n(k-2)+6mk\) 个顶点的图的 3-着色问题的量子版本[21]。此外,同步博弈((\mathcal {G}\))的获胜策略可以转化为相关图着色博弈的获胜策略,其中的策略对于诚实的验证者来说表现出完美的零知识。我们还证明,对于与 Atserias 等人的 \(\mathcal {G}\) 相关联的 "图着色博弈"(X(\mathcal {G})\),独立数博弈(Independence number game)的胜负策略是相同的。[1],独立数博弈 \(\text {Hom}(K_{|I|},\overline{X(\mathcal {G})})\)与 \(\mathcal {G}\)在遗传上是\(*\)等价的,因此,除了博弈代数之外,在所有模型中,两个博弈中获胜策略的可能性是相同的。因此,色度数、独立性数和小集团数的量子版本编码了所有量子模型中所有同步博弈的获胜策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Universality of Graph Homomorphism Games and the Quantum Coloring Problem

Universality of Graph Homomorphism Games and the Quantum Coloring Problem

Universality of Graph Homomorphism Games and the Quantum Coloring Problem

We show that quantum graph parameters for finite, simple, undirected graphs encode winning strategies for all possible synchronous non-local games. Given a synchronous game \(\mathcal {G}=(I,O,\lambda )\) with \(|I|=n\) and \(|O|=k\), we demonstrate what we call a weak \(*\)-equivalence between \(\mathcal {G}\) and a 3-coloring game on a graph with at most \(3+n+9n(k-2)+6|\lambda ^{-1}(\{0\})|\) vertices, strengthening and simplifying work implied by Ji [16] for winning quantum strategies for synchronous non-local games. As an application, we obtain a quantum version of Lovász’s reduction [21] of the k-coloring problem for a graph G with n vertices and m edges to the 3-coloring problem for a graph with \(3+n+9n(k-2)+6mk\) vertices. Moreover, winning strategies for a synchronous game \(\mathcal {G}\) can be transformed into winning strategies for an associated graph coloring game, where the strategies exhibit perfect zero knowledge for an honest verifier. We also show that, for “graph of the game” \(X(\mathcal {G})\) associated with \(\mathcal {G}\) from Atserias et al. [1], the independence number game \(\text {Hom}(K_{|I|},\overline{X(\mathcal {G})})\) is hereditarily \(*\)-equivalent to \(\mathcal {G}\), so that the possibility of winning strategies is the same in both games for all models, except the game algebra. Thus, the quantum versions of the chromatic number, independence number and clique number encode winning strategies for all synchronous games in all quantum models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信