短时傅立叶变换的法布尔-克拉恩不等式的稳定性

IF 2.6 1区 数学 Q1 MATHEMATICS
Jaime Gómez, André Guerra, João P. G. Ramos, Paolo Tilli
{"title":"短时傅立叶变换的法布尔-克拉恩不等式的稳定性","authors":"Jaime Gómez, André Guerra, João P. G. Ramos, Paolo Tilli","doi":"10.1007/s00222-024-01248-2","DOIUrl":null,"url":null,"abstract":"<p>We prove a sharp quantitative version of the Faber–Krahn inequality for the short-time Fourier transform (STFT). To do so, we consider a deficit <span>\\(\\delta (f;\\Omega )\\)</span> which measures by how much the STFT of a function <span>\\(f\\in L^{2}(\\mathbb{R})\\)</span> fails to be optimally concentrated on an arbitrary set <span>\\(\\Omega \\subset \\mathbb{R}^{2}\\)</span> of positive, finite measure. We then show that an optimal power of the deficit <span>\\(\\delta (f;\\Omega )\\)</span> controls both the <span>\\(L^{2}\\)</span>-distance of <span>\\(f\\)</span> to an appropriate class of Gaussians and the distance of <span>\\(\\Omega \\)</span> to a ball, through the Fraenkel asymmetry of <span>\\(\\Omega \\)</span>. Our proof is completely quantitative and hence all constants are explicit. We also establish suitable generalizations of this result in the higher-dimensional context.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"103 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of the Faber-Krahn inequality for the short-time Fourier transform\",\"authors\":\"Jaime Gómez, André Guerra, João P. G. Ramos, Paolo Tilli\",\"doi\":\"10.1007/s00222-024-01248-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a sharp quantitative version of the Faber–Krahn inequality for the short-time Fourier transform (STFT). To do so, we consider a deficit <span>\\\\(\\\\delta (f;\\\\Omega )\\\\)</span> which measures by how much the STFT of a function <span>\\\\(f\\\\in L^{2}(\\\\mathbb{R})\\\\)</span> fails to be optimally concentrated on an arbitrary set <span>\\\\(\\\\Omega \\\\subset \\\\mathbb{R}^{2}\\\\)</span> of positive, finite measure. We then show that an optimal power of the deficit <span>\\\\(\\\\delta (f;\\\\Omega )\\\\)</span> controls both the <span>\\\\(L^{2}\\\\)</span>-distance of <span>\\\\(f\\\\)</span> to an appropriate class of Gaussians and the distance of <span>\\\\(\\\\Omega \\\\)</span> to a ball, through the Fraenkel asymmetry of <span>\\\\(\\\\Omega \\\\)</span>. Our proof is completely quantitative and hence all constants are explicit. We also establish suitable generalizations of this result in the higher-dimensional context.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01248-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01248-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们为短时傅里叶变换(STFT)证明了一个尖锐的定量版法布尔-克拉恩不等式。为此,我们考虑了一个赤字(deficit \(\delta (f;\Omega )\),它衡量了函数 \(f\in L^{2}(\mathbb{R})\) 的 STFT 在多大程度上未能最优地集中在一个正的、有限度量的任意集合 \(\Omega \subset \mathbb{R}^{2}\) 上。然后我们证明,赤字 \(\delta (f;\Omega )\) 的最优幂既控制了 \(L^{2}\)- 距离 \(f\) 到一类合适的高斯的距离,也控制了 \(\Omega \) 到一个球的距离,这是通过 \(\Omega \) 的 Fraenkel 不对称来实现的。我们的证明完全是定量的,因此所有常数都是明确的。我们还建立了这一结果在高维背景下的适当概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of the Faber-Krahn inequality for the short-time Fourier transform

We prove a sharp quantitative version of the Faber–Krahn inequality for the short-time Fourier transform (STFT). To do so, we consider a deficit \(\delta (f;\Omega )\) which measures by how much the STFT of a function \(f\in L^{2}(\mathbb{R})\) fails to be optimally concentrated on an arbitrary set \(\Omega \subset \mathbb{R}^{2}\) of positive, finite measure. We then show that an optimal power of the deficit \(\delta (f;\Omega )\) controls both the \(L^{2}\)-distance of \(f\) to an appropriate class of Gaussians and the distance of \(\Omega \) to a ball, through the Fraenkel asymmetry of \(\Omega \). Our proof is completely quantitative and hence all constants are explicit. We also establish suitable generalizations of this result in the higher-dimensional context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信