Suaib Al Mahmud, Wazed Ibne Noor, Mazbahur Rahman Khan, Ahmad Faris Ismail
{"title":"利用 CFD 多相混合模型对水-al2o3 纳米流体传热增强模拟进行数值不确定性量化的人工神经网络","authors":"Suaib Al Mahmud, Wazed Ibne Noor, Mazbahur Rahman Khan, Ahmad Faris Ismail","doi":"10.1080/10407790.2024.2320719","DOIUrl":null,"url":null,"abstract":"Simulating nanofluids heat transfer enhancement using numerical methods like Computational Fluid Dynamics (CFD) is a popular practice. Whereas it’s known that errors play an important role in numer...","PeriodicalId":49732,"journal":{"name":"Numerical Heat Transfer Part B-Fundamentals","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural network for numerical uncertainty quantification of water-al2o3 nanofluids heat transfer enhancement simulation using CFD multiphase mixture model\",\"authors\":\"Suaib Al Mahmud, Wazed Ibne Noor, Mazbahur Rahman Khan, Ahmad Faris Ismail\",\"doi\":\"10.1080/10407790.2024.2320719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulating nanofluids heat transfer enhancement using numerical methods like Computational Fluid Dynamics (CFD) is a popular practice. Whereas it’s known that errors play an important role in numer...\",\"PeriodicalId\":49732,\"journal\":{\"name\":\"Numerical Heat Transfer Part B-Fundamentals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Heat Transfer Part B-Fundamentals\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10407790.2024.2320719\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Heat Transfer Part B-Fundamentals","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10407790.2024.2320719","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Artificial neural network for numerical uncertainty quantification of water-al2o3 nanofluids heat transfer enhancement simulation using CFD multiphase mixture model
Simulating nanofluids heat transfer enhancement using numerical methods like Computational Fluid Dynamics (CFD) is a popular practice. Whereas it’s known that errors play an important role in numer...
期刊介绍:
Published 12 times per year, Numerical Heat Transfer, Part B: Fundamentals addresses all aspects of the methodology for the numerical solution of problems in heat and mass transfer as well as fluid flow. The journal’s scope also encompasses modeling of complex physical phenomena that serves as a foundation for attaining numerical solutions, and includes numerical or experimental results that support methodology development.
All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. The Editor reserves the right to reject without peer review any papers deemed unsuitable.