加权空间和奥利兹-莫雷空间上某些分数型算子的换元器

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"加权空间和奥利兹-莫雷空间上某些分数型算子的换元器","authors":"","doi":"10.1007/s43037-024-00325-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we focus on a class of fractional type integral operators that can be served as extensions of Riesz potential with kernels <span> <span>$$\\begin{aligned} K(x,y)=\\frac{\\Omega _1(x-A_1 y)}{|x-A_1 y |^{{n}/{q_1}}} \\cdots \\frac{\\Omega _m(x-A_m y)}{|x-A_m y |^{{n}/{q_m}}}, \\end{aligned}$$</span> </span>where <span> <span>\\(\\alpha \\in [0,n)\\)</span> </span>, <span> <span>\\( m\\geqslant 1\\)</span> </span>, <span> <span>\\(\\sum \\limits _{i=1}^m\\frac{n}{q_i}=n-\\alpha \\)</span> </span>, <span> <span>\\(\\{A_i\\}^m_{i=1}\\)</span> </span> are invertible matrixes, <span> <span>\\(\\Omega _i\\)</span> </span> is homogeneous of degree 0 on <span> <span>\\(\\mathbb R^n\\)</span> </span> and <span> <span>\\(\\Omega _i\\in L^{p_i}(S^{n-1})\\)</span> </span> for some <span> <span>\\(p_i\\in [1,\\infty )\\)</span> </span>. Under appropriate assumptions, we obtain the weighted <span> <span>\\(L^p(\\mathbb R^n)-L^q(\\mathbb R^n)\\)</span> </span> estimates as well as weighted <span> <span>\\(H^p(\\mathbb R^n)-L^q(\\mathbb R^n)\\)</span> </span> estimates of the commutators for such operators with <em>BMO</em>-type function when <span> <span>\\(\\frac{1}{q}=\\frac{1}{p}-\\frac{\\alpha }{n}\\)</span> </span>. In addition, we acquire the boundedness of these operators and their commutators with a function in Campanato spaces on Orcliz–Morrey spaces as well as the compactness for such commutators in a special case: <span> <span>\\(m=1\\)</span> </span> and <span> <span>\\(A=I\\)</span> </span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutators for certain fractional type operators on weighted spaces and Orlicz–Morrey spaces\",\"authors\":\"\",\"doi\":\"10.1007/s43037-024-00325-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we focus on a class of fractional type integral operators that can be served as extensions of Riesz potential with kernels <span> <span>$$\\\\begin{aligned} K(x,y)=\\\\frac{\\\\Omega _1(x-A_1 y)}{|x-A_1 y |^{{n}/{q_1}}} \\\\cdots \\\\frac{\\\\Omega _m(x-A_m y)}{|x-A_m y |^{{n}/{q_m}}}, \\\\end{aligned}$$</span> </span>where <span> <span>\\\\(\\\\alpha \\\\in [0,n)\\\\)</span> </span>, <span> <span>\\\\( m\\\\geqslant 1\\\\)</span> </span>, <span> <span>\\\\(\\\\sum \\\\limits _{i=1}^m\\\\frac{n}{q_i}=n-\\\\alpha \\\\)</span> </span>, <span> <span>\\\\(\\\\{A_i\\\\}^m_{i=1}\\\\)</span> </span> are invertible matrixes, <span> <span>\\\\(\\\\Omega _i\\\\)</span> </span> is homogeneous of degree 0 on <span> <span>\\\\(\\\\mathbb R^n\\\\)</span> </span> and <span> <span>\\\\(\\\\Omega _i\\\\in L^{p_i}(S^{n-1})\\\\)</span> </span> for some <span> <span>\\\\(p_i\\\\in [1,\\\\infty )\\\\)</span> </span>. Under appropriate assumptions, we obtain the weighted <span> <span>\\\\(L^p(\\\\mathbb R^n)-L^q(\\\\mathbb R^n)\\\\)</span> </span> estimates as well as weighted <span> <span>\\\\(H^p(\\\\mathbb R^n)-L^q(\\\\mathbb R^n)\\\\)</span> </span> estimates of the commutators for such operators with <em>BMO</em>-type function when <span> <span>\\\\(\\\\frac{1}{q}=\\\\frac{1}{p}-\\\\frac{\\\\alpha }{n}\\\\)</span> </span>. In addition, we acquire the boundedness of these operators and their commutators with a function in Campanato spaces on Orcliz–Morrey spaces as well as the compactness for such commutators in a special case: <span> <span>\\\\(m=1\\\\)</span> </span> and <span> <span>\\\\(A=I\\\\)</span> </span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00325-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00325-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文主要研究一类分数型积分算子,这些算子可以作为核为 $$\begin{aligned} 的 Riesz 势的扩展。K(x,y)=\frac{Omega _1(x-A_1 y)}{|x-A_1 y |^{{n}/{q_1}}}\cdots \frac{Omega _m(x-A_m y)}{|x-A_m y |^{{n}/{q_m}}}, \end{aligned}$$ 其中 \(\alpha \in [0,n)\))、(m/geqslant 1\) 、(\sum \limits _{i=1}^m\frac{n}{q_i}=n-\alpha \)、(\{A_i\}^m_{i=1}\)都是可逆矩阵、 \在(\mathbb R^n\)上,(\Omega _i\)是0度同质的,并且对于某个\(p_i\in [1,\infty )\) ,(\Omega _i\in L^{p_i}(S^{n-1})\)是同质的。在适当的假设条件下、当 \(\frac{1}{q}=\frac{1}{p}-\frac{alpha }{n}\) 时,我们可以得到具有 BMO 型函数的此类算子的换向器的加权 \(L^p(\mathbb R^n)-L^q(\mathbb R^n)\) 估计值以及加权 \(H^p(\mathbb R^n)-L^q(\mathbb R^n)\) 估计值。此外,我们还获得了这些算子的有界性以及它们与奥克利茨-莫雷空间上的坎帕纳托空间中的函数的换元,以及在特殊情况下这些换元的紧凑性: \(m=1\) 和 (A=I\) .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commutators for certain fractional type operators on weighted spaces and Orlicz–Morrey spaces

Abstract

In this paper, we focus on a class of fractional type integral operators that can be served as extensions of Riesz potential with kernels $$\begin{aligned} K(x,y)=\frac{\Omega _1(x-A_1 y)}{|x-A_1 y |^{{n}/{q_1}}} \cdots \frac{\Omega _m(x-A_m y)}{|x-A_m y |^{{n}/{q_m}}}, \end{aligned}$$ where \(\alpha \in [0,n)\) , \( m\geqslant 1\) , \(\sum \limits _{i=1}^m\frac{n}{q_i}=n-\alpha \) , \(\{A_i\}^m_{i=1}\) are invertible matrixes, \(\Omega _i\) is homogeneous of degree 0 on \(\mathbb R^n\) and \(\Omega _i\in L^{p_i}(S^{n-1})\) for some \(p_i\in [1,\infty )\) . Under appropriate assumptions, we obtain the weighted \(L^p(\mathbb R^n)-L^q(\mathbb R^n)\) estimates as well as weighted \(H^p(\mathbb R^n)-L^q(\mathbb R^n)\) estimates of the commutators for such operators with BMO-type function when \(\frac{1}{q}=\frac{1}{p}-\frac{\alpha }{n}\) . In addition, we acquire the boundedness of these operators and their commutators with a function in Campanato spaces on Orcliz–Morrey spaces as well as the compactness for such commutators in a special case: \(m=1\) and \(A=I\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信