Adam R. H. Stevens, Manodeep Sinha, Alexander Rohl, Mawson W. Sammons, Boryana Hadzhiyska, César Hernández-Aguayo, Lars Hernquist
{"title":"DARK SAGE:具有多维结构和最小自由参数的新一代半分析星系演化","authors":"Adam R. H. Stevens, Manodeep Sinha, Alexander Rohl, Mawson W. Sammons, Boryana Hadzhiyska, César Hernández-Aguayo, Lars Hernquist","doi":"10.1017/pasa.2024.14","DOIUrl":null,"url":null,"abstract":"After more than five years of development, we present a new version of Dark Sage, a semi-analytic model (SAM) of galaxy formation that breaks the mould for models of its kind. Included among the major changes is an overhauled treatment of stellar feedback that is derived from energy conservation, operates on local scales, affects gas gradually over time rather than instantaneously, and predicts a mass-loading factor for every galaxy. Building on the model’s resolved angularmomentum structure of galaxies, we now consider the heating of stellar discs, delivering predictions for disc structure both radially and vertically. We add a further dimension to stellar discs by tracking the distribution of stellar ages in each annulus. Each annulus–age bin has its own velocity dispersion and metallicity evolved in the model. This allows Dark Sage to make structural predictions for galaxies that previously only hydrodynamic simulations could. We present the model as run on the merger trees of the highest-resolution gravity-only simulation of the MillenniumTNG suite. Despite its additional complexity relative to other SAMs, Dark Sage only has three free parameters, the least of any SAM, which we calibrate exclusively against the cosmic star formation history and the <jats:italic>z</jats:italic>=0 stellar and Hi mass functions using a particle-swarm optimisation method. The Dark Sage codebase, written in C and python, is publicly available at <jats:uri xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"https://github.com/arhstevens/DarkSage\">https://github.com/arhstevens/DarkSage</jats:uri>.","PeriodicalId":20753,"journal":{"name":"Publications of the Astronomical Society of Australia","volume":"233 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DARK SAGE: Next-generation semi-analytic galaxy evolution with multidimensional structure and minimal free parameters\",\"authors\":\"Adam R. H. Stevens, Manodeep Sinha, Alexander Rohl, Mawson W. Sammons, Boryana Hadzhiyska, César Hernández-Aguayo, Lars Hernquist\",\"doi\":\"10.1017/pasa.2024.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After more than five years of development, we present a new version of Dark Sage, a semi-analytic model (SAM) of galaxy formation that breaks the mould for models of its kind. Included among the major changes is an overhauled treatment of stellar feedback that is derived from energy conservation, operates on local scales, affects gas gradually over time rather than instantaneously, and predicts a mass-loading factor for every galaxy. Building on the model’s resolved angularmomentum structure of galaxies, we now consider the heating of stellar discs, delivering predictions for disc structure both radially and vertically. We add a further dimension to stellar discs by tracking the distribution of stellar ages in each annulus. Each annulus–age bin has its own velocity dispersion and metallicity evolved in the model. This allows Dark Sage to make structural predictions for galaxies that previously only hydrodynamic simulations could. We present the model as run on the merger trees of the highest-resolution gravity-only simulation of the MillenniumTNG suite. Despite its additional complexity relative to other SAMs, Dark Sage only has three free parameters, the least of any SAM, which we calibrate exclusively against the cosmic star formation history and the <jats:italic>z</jats:italic>=0 stellar and Hi mass functions using a particle-swarm optimisation method. The Dark Sage codebase, written in C and python, is publicly available at <jats:uri xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"https://github.com/arhstevens/DarkSage\\\">https://github.com/arhstevens/DarkSage</jats:uri>.\",\"PeriodicalId\":20753,\"journal\":{\"name\":\"Publications of the Astronomical Society of Australia\",\"volume\":\"233 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/pasa.2024.14\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Australia","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2024.14","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
DARK SAGE: Next-generation semi-analytic galaxy evolution with multidimensional structure and minimal free parameters
After more than five years of development, we present a new version of Dark Sage, a semi-analytic model (SAM) of galaxy formation that breaks the mould for models of its kind. Included among the major changes is an overhauled treatment of stellar feedback that is derived from energy conservation, operates on local scales, affects gas gradually over time rather than instantaneously, and predicts a mass-loading factor for every galaxy. Building on the model’s resolved angularmomentum structure of galaxies, we now consider the heating of stellar discs, delivering predictions for disc structure both radially and vertically. We add a further dimension to stellar discs by tracking the distribution of stellar ages in each annulus. Each annulus–age bin has its own velocity dispersion and metallicity evolved in the model. This allows Dark Sage to make structural predictions for galaxies that previously only hydrodynamic simulations could. We present the model as run on the merger trees of the highest-resolution gravity-only simulation of the MillenniumTNG suite. Despite its additional complexity relative to other SAMs, Dark Sage only has three free parameters, the least of any SAM, which we calibrate exclusively against the cosmic star formation history and the z=0 stellar and Hi mass functions using a particle-swarm optimisation method. The Dark Sage codebase, written in C and python, is publicly available at https://github.com/arhstevens/DarkSage.
期刊介绍:
Publications of the Astronomical Society of Australia (PASA) publishes new and significant research in astronomy and astrophysics. PASA covers a wide range of topics within astronomy, including multi-wavelength observations, theoretical modelling, computational astronomy and visualisation. PASA also maintains its heritage of publishing results on southern hemisphere astronomy and on astronomy with Australian facilities.
PASA publishes research papers, review papers and special series on topical issues, making use of expert international reviewers and an experienced Editorial Board. As an electronic-only journal, PASA publishes paper by paper, ensuring a rapid publication rate. There are no page charges. PASA''s Editorial Board approve a certain number of papers per year to be published Open Access without a publication fee.