M. Z. Han, J. B. Guo, J. Li, Y. J. Huang, H. R. Qi, X. M. Chen
{"title":"新型 TBM 圆盘铣刀环钢的工艺优化与性能","authors":"M. Z. Han, J. B. Guo, J. Li, Y. J. Huang, H. R. Qi, X. M. Chen","doi":"10.1007/s11223-024-00617-9","DOIUrl":null,"url":null,"abstract":"<p>During the tunneling process of high-abrasion stratum with strong impact by tunnel boring machines (TBM), disc cutter rings made of H13 and DC53 steels are prone to failures like wear and chipping. To improve the service life of the cutter ring, a new kind of Cr-Mo-W-V medium carbon alloy cutter ring steel (DQ1) with better hardness and toughness was developed. The effects of the heat treatment process on the microscopic structure and mechanical properties of DQ1 steel were studied by the spectrometer, optical microscope, Rockwell hardness tester, and impact tester. The wear resistance of DQ1, H13, and DC53 steel was compared and analyzed through the abrasive wear test and rock breaking test. The results indicate that outstanding mechanical properties and wear resistance of DQ1 steel were obtained after quenching at 1040°C and tempering at 540°C, the hardness was 4.4 HRC higher than that of H13 steel, and the impact absorption energy was 85.7% higher than that of DC53 steel. In excavating strong impact and high abrasion formations, the average service life of the DQ1 steel cutter ring was increased by 24.6% compared with the H13 steel cutter ring, and the brittle fracture problem common in the DC53 cutter ring did not appear. The research achievements can facilitate to improve the excavation efficiency and reduce the cost of TBM in high strength and high erosion strata.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process Optimization and Performance of New TBM Disc Cutter Ring Steel\",\"authors\":\"M. Z. Han, J. B. Guo, J. Li, Y. J. Huang, H. R. Qi, X. M. Chen\",\"doi\":\"10.1007/s11223-024-00617-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During the tunneling process of high-abrasion stratum with strong impact by tunnel boring machines (TBM), disc cutter rings made of H13 and DC53 steels are prone to failures like wear and chipping. To improve the service life of the cutter ring, a new kind of Cr-Mo-W-V medium carbon alloy cutter ring steel (DQ1) with better hardness and toughness was developed. The effects of the heat treatment process on the microscopic structure and mechanical properties of DQ1 steel were studied by the spectrometer, optical microscope, Rockwell hardness tester, and impact tester. The wear resistance of DQ1, H13, and DC53 steel was compared and analyzed through the abrasive wear test and rock breaking test. The results indicate that outstanding mechanical properties and wear resistance of DQ1 steel were obtained after quenching at 1040°C and tempering at 540°C, the hardness was 4.4 HRC higher than that of H13 steel, and the impact absorption energy was 85.7% higher than that of DC53 steel. In excavating strong impact and high abrasion formations, the average service life of the DQ1 steel cutter ring was increased by 24.6% compared with the H13 steel cutter ring, and the brittle fracture problem common in the DC53 cutter ring did not appear. The research achievements can facilitate to improve the excavation efficiency and reduce the cost of TBM in high strength and high erosion strata.</p>\",\"PeriodicalId\":22007,\"journal\":{\"name\":\"Strength of Materials\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11223-024-00617-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00617-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Process Optimization and Performance of New TBM Disc Cutter Ring Steel
During the tunneling process of high-abrasion stratum with strong impact by tunnel boring machines (TBM), disc cutter rings made of H13 and DC53 steels are prone to failures like wear and chipping. To improve the service life of the cutter ring, a new kind of Cr-Mo-W-V medium carbon alloy cutter ring steel (DQ1) with better hardness and toughness was developed. The effects of the heat treatment process on the microscopic structure and mechanical properties of DQ1 steel were studied by the spectrometer, optical microscope, Rockwell hardness tester, and impact tester. The wear resistance of DQ1, H13, and DC53 steel was compared and analyzed through the abrasive wear test and rock breaking test. The results indicate that outstanding mechanical properties and wear resistance of DQ1 steel were obtained after quenching at 1040°C and tempering at 540°C, the hardness was 4.4 HRC higher than that of H13 steel, and the impact absorption energy was 85.7% higher than that of DC53 steel. In excavating strong impact and high abrasion formations, the average service life of the DQ1 steel cutter ring was increased by 24.6% compared with the H13 steel cutter ring, and the brittle fracture problem common in the DC53 cutter ring did not appear. The research achievements can facilitate to improve the excavation efficiency and reduce the cost of TBM in high strength and high erosion strata.
期刊介绍:
Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.