{"title":"数值半群商数的生成函数","authors":"FEIHU LIU","doi":"10.1017/s0004972724000054","DOIUrl":null,"url":null,"abstract":"We propose generating functions, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline1.png\" /> <jats:tex-math> $\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for the quotients of numerical semigroups which are related to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline2.png\" /> <jats:tex-math> $\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by extracting the constant term of a rational function. We use <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline3.png\" /> <jats:tex-math> $\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to give a system of generators for the quotient of the numerical semigroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline4.png\" /> <jats:tex-math> $\\langle a_1,a_2,a_3\\rangle $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:italic>p</jats:italic> for a small positive integer <jats:italic>p</jats:italic>, and we characterise the generators of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline5.png\" /> <jats:tex-math> ${\\langle A\\rangle }/{p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for a general numerical semigroup <jats:italic>A</jats:italic> and any positive integer <jats:italic>p</jats:italic>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"42 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GENERATING FUNCTIONS FOR THE QUOTIENTS OF NUMERICAL SEMIGROUPS\",\"authors\":\"FEIHU LIU\",\"doi\":\"10.1017/s0004972724000054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose generating functions, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000054_inline1.png\\\" /> <jats:tex-math> $\\\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for the quotients of numerical semigroups which are related to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000054_inline2.png\\\" /> <jats:tex-math> $\\\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by extracting the constant term of a rational function. We use <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000054_inline3.png\\\" /> <jats:tex-math> $\\\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to give a system of generators for the quotient of the numerical semigroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000054_inline4.png\\\" /> <jats:tex-math> $\\\\langle a_1,a_2,a_3\\\\rangle $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:italic>p</jats:italic> for a small positive integer <jats:italic>p</jats:italic>, and we characterise the generators of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000054_inline5.png\\\" /> <jats:tex-math> ${\\\\langle A\\\\rangle }/{p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for a general numerical semigroup <jats:italic>A</jats:italic> and any positive integer <jats:italic>p</jats:italic>.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000054\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000054","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了与西尔维斯特数数相关的数值半群商数的生成函数 $\textrm {RGF}_p(x)$ 。利用麦克马洪的分割分析,我们可以通过提取有理函数的常数项得到 $\textrm {RGF}_p(x)$ 。我们利用 $\textrm {RGF}_p(x)$ 给出了一个小正整数 p 的数值半群 $\langle a_1,a_2,a_3\rangle $ 的商的生成器系统,并描述了一般数值半群 A 和任意正整数 p 的 ${\langle A\rangle }/{p}$ 的生成器的特征。
GENERATING FUNCTIONS FOR THE QUOTIENTS OF NUMERICAL SEMIGROUPS
We propose generating functions, $\textrm {RGF}_p(x)$ , for the quotients of numerical semigroups which are related to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain $\textrm {RGF}_p(x)$ by extracting the constant term of a rational function. We use $\textrm {RGF}_p(x)$ to give a system of generators for the quotient of the numerical semigroup $\langle a_1,a_2,a_3\rangle $ by p for a small positive integer p, and we characterise the generators of ${\langle A\rangle }/{p}$ for a general numerical semigroup A and any positive integer p.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society