{"title":"用于砂浆筒加固的插入式圆筒结构","authors":"","doi":"10.1007/s11223-024-00606-y","DOIUrl":null,"url":null,"abstract":"<p>In the course of combat operations, accidental projectile detonation in the mortar barrel channel can occur through the faulty fuze actuation or detonation of two projectiles for the violation of safety measures, viz double charging of the mortar. Barrel rupture occasions pose new challenges for the developers of this weapon to improve the safe operation of mortars. The literature analysis revealed that among the current studies on the stress-strain state of mortar barrels during the projectile explosion in their channel, the results of determining the stresses in the barrel structures capable of withstanding the explosive gas pressure in the channel were absent. Existing mathematical models for evaluating the stress-strain state of a mortar barrel on the projectile detonation in its channel need to be improved. The potentials of developing new approaches to mortar barrel strengthening for combat operations are substantiated. For this, the theory of insert liquid-filled cylinder structures (pipes) is proposed. The internal pressure for those structures is calculated. The mortar barrels can be modified by applying the optimum combination of new materials and modern design circuitry.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"234 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insert Cylinder Structures for Mortar Barrel Strengthening\",\"authors\":\"\",\"doi\":\"10.1007/s11223-024-00606-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the course of combat operations, accidental projectile detonation in the mortar barrel channel can occur through the faulty fuze actuation or detonation of two projectiles for the violation of safety measures, viz double charging of the mortar. Barrel rupture occasions pose new challenges for the developers of this weapon to improve the safe operation of mortars. The literature analysis revealed that among the current studies on the stress-strain state of mortar barrels during the projectile explosion in their channel, the results of determining the stresses in the barrel structures capable of withstanding the explosive gas pressure in the channel were absent. Existing mathematical models for evaluating the stress-strain state of a mortar barrel on the projectile detonation in its channel need to be improved. The potentials of developing new approaches to mortar barrel strengthening for combat operations are substantiated. For this, the theory of insert liquid-filled cylinder structures (pipes) is proposed. The internal pressure for those structures is calculated. The mortar barrels can be modified by applying the optimum combination of new materials and modern design circuitry.</p>\",\"PeriodicalId\":22007,\"journal\":{\"name\":\"Strength of Materials\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11223-024-00606-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00606-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Insert Cylinder Structures for Mortar Barrel Strengthening
In the course of combat operations, accidental projectile detonation in the mortar barrel channel can occur through the faulty fuze actuation or detonation of two projectiles for the violation of safety measures, viz double charging of the mortar. Barrel rupture occasions pose new challenges for the developers of this weapon to improve the safe operation of mortars. The literature analysis revealed that among the current studies on the stress-strain state of mortar barrels during the projectile explosion in their channel, the results of determining the stresses in the barrel structures capable of withstanding the explosive gas pressure in the channel were absent. Existing mathematical models for evaluating the stress-strain state of a mortar barrel on the projectile detonation in its channel need to be improved. The potentials of developing new approaches to mortar barrel strengthening for combat operations are substantiated. For this, the theory of insert liquid-filled cylinder structures (pipes) is proposed. The internal pressure for those structures is calculated. The mortar barrels can be modified by applying the optimum combination of new materials and modern design circuitry.
期刊介绍:
Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.