实元素和有理元素上的射影特征值

IF 0.6 4区 数学 Q3 MATHEMATICS
R. J. HIGGS
{"title":"实元素和有理元素上的射影特征值","authors":"R. J. HIGGS","doi":"10.1017/s0004972724000030","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline1.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a complex-valued <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline2.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-cocycle of a finite group <jats:italic>G</jats:italic> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline3.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> chosen so that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline4.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-characters of <jats:italic>G</jats:italic> are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of <jats:italic>G</jats:italic> that are also <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline5.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular are characterised by the values that the irreducible <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline6.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-characters of <jats:italic>G</jats:italic> take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline7.png\" /> <jats:tex-math> $G;$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> however, the initial choice of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline8.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> from its cohomology class is not unique in general and it is shown the results can vary for a different choice.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"35 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROJECTIVE CHARACTER VALUES ON REAL AND RATIONAL ELEMENTS\",\"authors\":\"R. J. HIGGS\",\"doi\":\"10.1017/s0004972724000030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline1.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a complex-valued <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline2.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-cocycle of a finite group <jats:italic>G</jats:italic> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline3.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> chosen so that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline4.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-characters of <jats:italic>G</jats:italic> are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of <jats:italic>G</jats:italic> that are also <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline5.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular are characterised by the values that the irreducible <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline6.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-characters of <jats:italic>G</jats:italic> take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline7.png\\\" /> <jats:tex-math> $G;$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> however, the initial choice of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline8.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> from its cohomology class is not unique in general and it is shown the results can vary for a different choice.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000030\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $\alpha $ 是有限群 G 的复值 $2$ -环,其中 $\alpha $ 的选择使得 G 的 $\alpha $ - 字符是类函数,并且普通字符的正交关系的类似物有效。那么,G 的实元素或有理元素也是 $\alpha $ 规则的,它们的特征就是 G 的不可还原 $\alpha $ 字符在这些元素上的取值。这些新结果概括了关于这类元素和 $G 的不可还原普通字符的两个已知事实;$ 然而,从其同调类中初始选择 $\alpha $ 一般来说并不是唯一的,而且结果表明不同的选择会有不同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROJECTIVE CHARACTER VALUES ON REAL AND RATIONAL ELEMENTS
Let $\alpha $ be a complex-valued $2$ -cocycle of a finite group G with $\alpha $ chosen so that the $\alpha $ -characters of G are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of G that are also $\alpha $ -regular are characterised by the values that the irreducible $\alpha $ -characters of G take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of $G;$ however, the initial choice of $\alpha $ from its cohomology class is not unique in general and it is shown the results can vary for a different choice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信