{"title":"实元素和有理元素上的射影特征值","authors":"R. J. HIGGS","doi":"10.1017/s0004972724000030","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline1.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a complex-valued <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline2.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-cocycle of a finite group <jats:italic>G</jats:italic> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline3.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> chosen so that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline4.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-characters of <jats:italic>G</jats:italic> are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of <jats:italic>G</jats:italic> that are also <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline5.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular are characterised by the values that the irreducible <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline6.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-characters of <jats:italic>G</jats:italic> take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline7.png\" /> <jats:tex-math> $G;$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> however, the initial choice of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000030_inline8.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> from its cohomology class is not unique in general and it is shown the results can vary for a different choice.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"35 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROJECTIVE CHARACTER VALUES ON REAL AND RATIONAL ELEMENTS\",\"authors\":\"R. J. HIGGS\",\"doi\":\"10.1017/s0004972724000030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline1.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a complex-valued <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline2.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-cocycle of a finite group <jats:italic>G</jats:italic> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline3.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> chosen so that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline4.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-characters of <jats:italic>G</jats:italic> are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of <jats:italic>G</jats:italic> that are also <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline5.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular are characterised by the values that the irreducible <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline6.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-characters of <jats:italic>G</jats:italic> take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline7.png\\\" /> <jats:tex-math> $G;$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> however, the initial choice of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000030_inline8.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> from its cohomology class is not unique in general and it is shown the results can vary for a different choice.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000030\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
PROJECTIVE CHARACTER VALUES ON REAL AND RATIONAL ELEMENTS
Let $\alpha $ be a complex-valued $2$ -cocycle of a finite group G with $\alpha $ chosen so that the $\alpha $ -characters of G are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of G that are also $\alpha $ -regular are characterised by the values that the irreducible $\alpha $ -characters of G take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of $G;$ however, the initial choice of $\alpha $ from its cohomology class is not unique in general and it is shown the results can vary for a different choice.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society