{"title":"函数域上的二刁移原则","authors":"SOURAV DAS, ARIJIT GANGULY","doi":"10.1017/s0004972724000029","DOIUrl":null,"url":null,"abstract":"We study the Diophantine transference principle over function fields. By adapting the approach of Beresnevich and Velani [‘An inhomogeneous transference principle and Diophantine approximation’, <jats:italic>Proc. Lond. Math. Soc. (3)</jats:italic>101 (2010), 821–851] to function fields, we extend many results from homogeneous to inhomogeneous Diophantine approximation. This also yields the inhomogeneous Baker–Sprindžuk conjecture over function fields and upper bounds for the general nonextremal scenario.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIOPHANTINE TRANSFERENCE PRINCIPLE OVER FUNCTION FIELDS\",\"authors\":\"SOURAV DAS, ARIJIT GANGULY\",\"doi\":\"10.1017/s0004972724000029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Diophantine transference principle over function fields. By adapting the approach of Beresnevich and Velani [‘An inhomogeneous transference principle and Diophantine approximation’, <jats:italic>Proc. Lond. Math. Soc. (3)</jats:italic>101 (2010), 821–851] to function fields, we extend many results from homogeneous to inhomogeneous Diophantine approximation. This also yields the inhomogeneous Baker–Sprindžuk conjecture over function fields and upper bounds for the general nonextremal scenario.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000029\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
DIOPHANTINE TRANSFERENCE PRINCIPLE OVER FUNCTION FIELDS
We study the Diophantine transference principle over function fields. By adapting the approach of Beresnevich and Velani [‘An inhomogeneous transference principle and Diophantine approximation’, Proc. Lond. Math. Soc. (3)101 (2010), 821–851] to function fields, we extend many results from homogeneous to inhomogeneous Diophantine approximation. This also yields the inhomogeneous Baker–Sprindžuk conjecture over function fields and upper bounds for the general nonextremal scenario.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society