{"title":"关于埃塔莱群集代数中的投影和对角保全同态的注释","authors":"BENJAMIN STEINBERG","doi":"10.1017/s0004972724000042","DOIUrl":null,"url":null,"abstract":"Carlsen [‘<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline1.png\" /> <jats:tex-math> $\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-isomorphism of Leavitt path algebras over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline2.png\" /> <jats:tex-math> $\\Bbb Z$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>’, <jats:italic>Adv. Math.</jats:italic>324 (2018), 326–335] showed that any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline3.png\" /> <jats:tex-math> $\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-homomorphism between Leavitt path algebras over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline4.png\" /> <jats:tex-math> $\\mathbb Z$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is automatically diagonal preserving and hence induces an isomorphism of boundary path groupoids. His result works over conjugation-closed subrings of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline5.png\" /> <jats:tex-math> $\\mathbb C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> enjoying certain properties. In this paper, we characterise the rings considered by Carlsen as precisely those rings for which every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline6.png\" /> <jats:tex-math> $\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-homomorphism of algebras of Hausdorff ample groupoids is automatically diagonal preserving. Moreover, the more general groupoid result has a simpler proof.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"26 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON PROJECTIONS IN ÉTALE GROUPOID ALGEBRAS AND DIAGONAL-PRESERVING HOMOMORPHISMS\",\"authors\":\"BENJAMIN STEINBERG\",\"doi\":\"10.1017/s0004972724000042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carlsen [‘<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline1.png\\\" /> <jats:tex-math> $\\\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-isomorphism of Leavitt path algebras over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline2.png\\\" /> <jats:tex-math> $\\\\Bbb Z$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>’, <jats:italic>Adv. Math.</jats:italic>324 (2018), 326–335] showed that any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline3.png\\\" /> <jats:tex-math> $\\\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-homomorphism between Leavitt path algebras over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline4.png\\\" /> <jats:tex-math> $\\\\mathbb Z$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is automatically diagonal preserving and hence induces an isomorphism of boundary path groupoids. His result works over conjugation-closed subrings of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline5.png\\\" /> <jats:tex-math> $\\\\mathbb C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> enjoying certain properties. In this paper, we characterise the rings considered by Carlsen as precisely those rings for which every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline6.png\\\" /> <jats:tex-math> $\\\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-homomorphism of algebras of Hausdorff ample groupoids is automatically diagonal preserving. Moreover, the more general groupoid result has a simpler proof.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000042\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A NOTE ON PROJECTIONS IN ÉTALE GROUPOID ALGEBRAS AND DIAGONAL-PRESERVING HOMOMORPHISMS
Carlsen [‘ $\ast $ -isomorphism of Leavitt path algebras over $\Bbb Z$ ’, Adv. Math.324 (2018), 326–335] showed that any $\ast $ -homomorphism between Leavitt path algebras over $\mathbb Z$ is automatically diagonal preserving and hence induces an isomorphism of boundary path groupoids. His result works over conjugation-closed subrings of $\mathbb C$ enjoying certain properties. In this paper, we characterise the rings considered by Carlsen as precisely those rings for which every $\ast $ -homomorphism of algebras of Hausdorff ample groupoids is automatically diagonal preserving. Moreover, the more general groupoid result has a simpler proof.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society