关于埃塔莱群集代数中的投影和对角保全同态的注释

IF 0.6 4区 数学 Q3 MATHEMATICS
BENJAMIN STEINBERG
{"title":"关于埃塔莱群集代数中的投影和对角保全同态的注释","authors":"BENJAMIN STEINBERG","doi":"10.1017/s0004972724000042","DOIUrl":null,"url":null,"abstract":"Carlsen [‘<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline1.png\" /> <jats:tex-math> $\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-isomorphism of Leavitt path algebras over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline2.png\" /> <jats:tex-math> $\\Bbb Z$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>’, <jats:italic>Adv. Math.</jats:italic>324 (2018), 326–335] showed that any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline3.png\" /> <jats:tex-math> $\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-homomorphism between Leavitt path algebras over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline4.png\" /> <jats:tex-math> $\\mathbb Z$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is automatically diagonal preserving and hence induces an isomorphism of boundary path groupoids. His result works over conjugation-closed subrings of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline5.png\" /> <jats:tex-math> $\\mathbb C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> enjoying certain properties. In this paper, we characterise the rings considered by Carlsen as precisely those rings for which every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000042_inline6.png\" /> <jats:tex-math> $\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-homomorphism of algebras of Hausdorff ample groupoids is automatically diagonal preserving. Moreover, the more general groupoid result has a simpler proof.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"26 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON PROJECTIONS IN ÉTALE GROUPOID ALGEBRAS AND DIAGONAL-PRESERVING HOMOMORPHISMS\",\"authors\":\"BENJAMIN STEINBERG\",\"doi\":\"10.1017/s0004972724000042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carlsen [‘<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline1.png\\\" /> <jats:tex-math> $\\\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-isomorphism of Leavitt path algebras over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline2.png\\\" /> <jats:tex-math> $\\\\Bbb Z$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>’, <jats:italic>Adv. Math.</jats:italic>324 (2018), 326–335] showed that any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline3.png\\\" /> <jats:tex-math> $\\\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-homomorphism between Leavitt path algebras over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline4.png\\\" /> <jats:tex-math> $\\\\mathbb Z$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is automatically diagonal preserving and hence induces an isomorphism of boundary path groupoids. His result works over conjugation-closed subrings of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline5.png\\\" /> <jats:tex-math> $\\\\mathbb C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> enjoying certain properties. In this paper, we characterise the rings considered by Carlsen as precisely those rings for which every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000042_inline6.png\\\" /> <jats:tex-math> $\\\\ast $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-homomorphism of algebras of Hausdorff ample groupoids is automatically diagonal preserving. Moreover, the more general groupoid result has a simpler proof.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000042\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

卡尔森(Carlsen)[' $\ast $ -isomorphism of Leavitt path algebras over $\Bbb Z$ ', Adv. Math.324 (2018), 326-335]表明,在$\mathbb Z$上的Leavitt路径代数之间的任何$\ast $ -同构都是自动对角保全的,因此会诱导边界路径群的同构。他的结果适用于$\mathbb C$的共轭封闭子环,并享有某些性质。在本文中,我们将卡尔森所考虑的环描述为这样的环:对于这些环,豪斯多夫充裕类群的每一个 $\ast $ -同构都自动地对角保全。此外,更一般的类群结果有一个更简单的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NOTE ON PROJECTIONS IN ÉTALE GROUPOID ALGEBRAS AND DIAGONAL-PRESERVING HOMOMORPHISMS
Carlsen [‘ $\ast $ -isomorphism of Leavitt path algebras over $\Bbb Z$ ’, Adv. Math.324 (2018), 326–335] showed that any $\ast $ -homomorphism between Leavitt path algebras over $\mathbb Z$ is automatically diagonal preserving and hence induces an isomorphism of boundary path groupoids. His result works over conjugation-closed subrings of $\mathbb C$ enjoying certain properties. In this paper, we characterise the rings considered by Carlsen as precisely those rings for which every $\ast $ -homomorphism of algebras of Hausdorff ample groupoids is automatically diagonal preserving. Moreover, the more general groupoid result has a simpler proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信