{"title":"$$overline{/mathcal {R}}_{g,2}$ 和 Prym-canonical divisorial strata 的二元几何图形","authors":"","doi":"10.1007/s00029-023-00907-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We prove that the moduli space of double covers ramified at two points <span> <span>\\({\\mathcal {R}}_{g,2}\\)</span> </span> is uniruled for <span> <span>\\(3\\le g\\le 6\\)</span> </span> and of general type for <span> <span>\\(g\\ge 16\\)</span> </span>. Furthermore, we consider Prym-canonical divisorial strata in the moduli space <span> <span>\\(\\overline{{\\mathcal {C}}^n{\\mathcal {R}}}_g\\)</span> </span> parametrizing <em>n</em>-pointed Prym curves, and we compute their classes in <span> <span>\\(\\textrm{Pic}_{\\mathbb {Q}}(\\overline{{\\mathcal {C}}^n{\\mathcal {R}}}_g)\\)</span> </span>. </p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The birational geometry of $$\\\\overline{{\\\\mathcal {R}}}_{g,2}$$ and Prym-canonical divisorial strata\",\"authors\":\"\",\"doi\":\"10.1007/s00029-023-00907-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We prove that the moduli space of double covers ramified at two points <span> <span>\\\\({\\\\mathcal {R}}_{g,2}\\\\)</span> </span> is uniruled for <span> <span>\\\\(3\\\\le g\\\\le 6\\\\)</span> </span> and of general type for <span> <span>\\\\(g\\\\ge 16\\\\)</span> </span>. Furthermore, we consider Prym-canonical divisorial strata in the moduli space <span> <span>\\\\(\\\\overline{{\\\\mathcal {C}}^n{\\\\mathcal {R}}}_g\\\\)</span> </span> parametrizing <em>n</em>-pointed Prym curves, and we compute their classes in <span> <span>\\\\(\\\\textrm{Pic}_{\\\\mathbb {Q}}(\\\\overline{{\\\\mathcal {C}}^n{\\\\mathcal {R}}}_g)\\\\)</span> </span>. </p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00907-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00907-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The birational geometry of $$\overline{{\mathcal {R}}}_{g,2}$$ and Prym-canonical divisorial strata
Abstract
We prove that the moduli space of double covers ramified at two points \({\mathcal {R}}_{g,2}\) is uniruled for \(3\le g\le 6\) and of general type for \(g\ge 16\). Furthermore, we consider Prym-canonical divisorial strata in the moduli space \(\overline{{\mathcal {C}}^n{\mathcal {R}}}_g\) parametrizing n-pointed Prym curves, and we compute their classes in \(\textrm{Pic}_{\mathbb {Q}}(\overline{{\mathcal {C}}^n{\mathcal {R}}}_g)\).