热带曲线上魏尔斯特拉斯点的分布

David Harry Richman
{"title":"热带曲线上魏尔斯特拉斯点的分布","authors":"David Harry Richman","doi":"10.1007/s00029-024-00919-5","DOIUrl":null,"url":null,"abstract":"<p>We show that on a metric graph of genus <i>g</i>, a divisor of degree <span>\\(n\\)</span> generically has <span>\\(g(n-g+1)\\)</span> Weierstrass points. For a sequence of generic divisors on a metric graph whose degrees grow to infinity, we show that the associated Weierstrass points become distributed according to the Zhang canonical measure. In other words, the limiting distribution is determined by effective resistances on the metric graph. This distribution result has an analogue for complex algebraic curves, due to Neeman, and for curves over non-Archimedean fields, due to Amini.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The distribution of Weierstrass points on a tropical curve\",\"authors\":\"David Harry Richman\",\"doi\":\"10.1007/s00029-024-00919-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that on a metric graph of genus <i>g</i>, a divisor of degree <span>\\\\(n\\\\)</span> generically has <span>\\\\(g(n-g+1)\\\\)</span> Weierstrass points. For a sequence of generic divisors on a metric graph whose degrees grow to infinity, we show that the associated Weierstrass points become distributed according to the Zhang canonical measure. In other words, the limiting distribution is determined by effective resistances on the metric graph. This distribution result has an analogue for complex algebraic curves, due to Neeman, and for curves over non-Archimedean fields, due to Amini.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00919-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00919-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在属 g 的度量图上,度数为 \(n\) 的除数一般具有 \(g(n-g+1)\)魏尔斯特拉斯点。对于度数增长到无穷大的公元图上的一般除数序列,我们证明相关的魏尔斯特拉斯点会按照张规范度量分布。换句话说,极限分布是由公元图上的有效阻力决定的。这一分布结果类似于尼曼(Neeman)提出的复代数曲线,也类似于阿米尼(Amini)提出的非阿基米德域上的曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The distribution of Weierstrass points on a tropical curve

The distribution of Weierstrass points on a tropical curve

We show that on a metric graph of genus g, a divisor of degree \(n\) generically has \(g(n-g+1)\) Weierstrass points. For a sequence of generic divisors on a metric graph whose degrees grow to infinity, we show that the associated Weierstrass points become distributed according to the Zhang canonical measure. In other words, the limiting distribution is determined by effective resistances on the metric graph. This distribution result has an analogue for complex algebraic curves, due to Neeman, and for curves over non-Archimedean fields, due to Amini.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信