拉普拉斯边能图新族

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Cahit Dede
{"title":"拉普拉斯边能图新族","authors":"Cahit Dede","doi":"10.1007/s00236-024-00454-y","DOIUrl":null,"url":null,"abstract":"<div><p>Laplacian matrix and its spectrum are commonly used for giving a measure in networks in order to analyse its topological properties. In this paper, Laplacian matrix of graphs and their spectrum are studied. Laplacian energy of a graph <i>G</i> of order <i>n</i> is defined as <span>\\( \\mathrm{{LE}}(G) = \\sum _{i=1}^n|\\lambda _i(L)-{\\bar{d}}|\\)</span>, where <span>\\(\\lambda _i(L)\\)</span> is the <i>i</i>-th eigenvalue of Laplacian matrix of <i>G</i>, and <span>\\({\\bar{d}}\\)</span> is their average. If <span>\\(\\mathrm{{LE}}(G) = \\mathrm{{LE}}(K_n)\\)</span> for the complete graph <span>\\(K_n\\)</span> of order <i>n</i>, then <i>G</i> is known as <i>L</i>-borderenergetic graph. In the first part of this paper, we construct three infinite families of non-complete disconnected <i>L</i>-borderenergetic graphs: <span>\\(\\Lambda _1 = \\{ G_{b,j,k} = [(((j-2)k-2j+2)b+1)K_{(j-1)k-(j-2)}] \\cup b(K_j \\times K_k)| b,j,k \\in {{\\mathbb {Z}}}^+\\}\\)</span>, <span>\\( \\Lambda _2 = \\{G_{2,b} = [K_6 \\nabla b(K_2 \\times K_3)] \\cup (4b-2)K_9 | b\\in {{\\mathbb {Z}}}^+ \\}\\)</span>, <span>\\( \\Lambda _3 = \\{G_{3,b} = [bK_8 \\nabla b(K_2 \\times K_4)] \\cup (14b-4)K_{8b+6} | b\\in {{\\mathbb {Z}}}^+ \\}\\)</span>, where <span>\\(\\nabla \\)</span> is join operator and <span>\\(\\times \\)</span> is direct product operator on graphs. Then, in the second part of this work, we construct new infinite families of non-complete connected <i>L</i>-borderenergetic graphs <span>\\(\\Omega _1= \\{K_2 \\nabla \\overline{aK_2^r} \\vert a\\in {{\\mathbb {Z}}}^+\\}\\)</span>, <span>\\(\\Omega _2 = \\{\\overline{aK_3 \\cup 2(K_2\\times K_3)}\\vert a\\in {{\\mathbb {Z}}}^+ \\}\\)</span> and <span>\\(\\Omega _3 = \\{\\overline{aK_5 \\cup (K_3\\times K_3)}\\vert a\\in {{\\mathbb {Z}}}^+ \\}\\)</span>, where <span>\\({\\overline{G}}\\)</span> is the complement operator on <i>G</i>.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New families of Laplacian borderenergetic graphs\",\"authors\":\"Cahit Dede\",\"doi\":\"10.1007/s00236-024-00454-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laplacian matrix and its spectrum are commonly used for giving a measure in networks in order to analyse its topological properties. In this paper, Laplacian matrix of graphs and their spectrum are studied. Laplacian energy of a graph <i>G</i> of order <i>n</i> is defined as <span>\\\\( \\\\mathrm{{LE}}(G) = \\\\sum _{i=1}^n|\\\\lambda _i(L)-{\\\\bar{d}}|\\\\)</span>, where <span>\\\\(\\\\lambda _i(L)\\\\)</span> is the <i>i</i>-th eigenvalue of Laplacian matrix of <i>G</i>, and <span>\\\\({\\\\bar{d}}\\\\)</span> is their average. If <span>\\\\(\\\\mathrm{{LE}}(G) = \\\\mathrm{{LE}}(K_n)\\\\)</span> for the complete graph <span>\\\\(K_n\\\\)</span> of order <i>n</i>, then <i>G</i> is known as <i>L</i>-borderenergetic graph. In the first part of this paper, we construct three infinite families of non-complete disconnected <i>L</i>-borderenergetic graphs: <span>\\\\(\\\\Lambda _1 = \\\\{ G_{b,j,k} = [(((j-2)k-2j+2)b+1)K_{(j-1)k-(j-2)}] \\\\cup b(K_j \\\\times K_k)| b,j,k \\\\in {{\\\\mathbb {Z}}}^+\\\\}\\\\)</span>, <span>\\\\( \\\\Lambda _2 = \\\\{G_{2,b} = [K_6 \\\\nabla b(K_2 \\\\times K_3)] \\\\cup (4b-2)K_9 | b\\\\in {{\\\\mathbb {Z}}}^+ \\\\}\\\\)</span>, <span>\\\\( \\\\Lambda _3 = \\\\{G_{3,b} = [bK_8 \\\\nabla b(K_2 \\\\times K_4)] \\\\cup (14b-4)K_{8b+6} | b\\\\in {{\\\\mathbb {Z}}}^+ \\\\}\\\\)</span>, where <span>\\\\(\\\\nabla \\\\)</span> is join operator and <span>\\\\(\\\\times \\\\)</span> is direct product operator on graphs. Then, in the second part of this work, we construct new infinite families of non-complete connected <i>L</i>-borderenergetic graphs <span>\\\\(\\\\Omega _1= \\\\{K_2 \\\\nabla \\\\overline{aK_2^r} \\\\vert a\\\\in {{\\\\mathbb {Z}}}^+\\\\}\\\\)</span>, <span>\\\\(\\\\Omega _2 = \\\\{\\\\overline{aK_3 \\\\cup 2(K_2\\\\times K_3)}\\\\vert a\\\\in {{\\\\mathbb {Z}}}^+ \\\\}\\\\)</span> and <span>\\\\(\\\\Omega _3 = \\\\{\\\\overline{aK_5 \\\\cup (K_3\\\\times K_3)}\\\\vert a\\\\in {{\\\\mathbb {Z}}}^+ \\\\}\\\\)</span>, where <span>\\\\({\\\\overline{G}}\\\\)</span> is the complement operator on <i>G</i>.</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-024-00454-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-024-00454-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

拉普拉斯矩阵及其频谱通常用于给出网络的度量,以分析其拓扑特性。本文研究了图的拉普拉斯矩阵及其谱。阶数为 n 的图 G 的拉普拉卡能量定义为 \( \mathrm{{LE}}(G) = \sum _{i=1}^n|\lambda _i(L)-{\bar{d}}|\), 其中 \(\lambda _i(L)\) 是 G 的拉普拉卡矩阵的第 i 个特征值,\({\bar{d}}\) 是它们的平均值。如果对于阶数为 n 的完整图 \(K_n/),\(\mathrm{{LE}}(G) = \mathrm{{LE}}(K_n)\),则 G 被称为 L 边能图。在本文的第一部分,我们构建了三个无穷族的非完全互不连接的 L-borderenergetic 图:\(\Lambda _1 = \{ G_{b,j,k} = [(((j-2)k-2j+2)b+1)K_{(j-1)k-(j-2)}] \cup b(K_j \times K_k)| b,j,k \in {{\mathbb {Z}}}^+\}\), \( \Lambda _2 = \{G_{2、b} = [K_6 \nabla b(K_2 \times K_3)] \cup (4b-2)K_9 | b\in {{\mathbb {Z}}}^+ \}),( ( Lambda _3 = \{G_{3,b} = [bK_8 \nabla b(K_2 \times K_4)] \cup (14b-4)K_{8b+6}| bin {{\mathbb {Z}}^+ \}),其中 \(\nabla \)是连接算子,\(\times \)是图上的直接积算子。然后,在这项工作的第二部分,我们构建了新的无穷族非完全连通 L 边能图 \(\Omega _1= \{K_2 \nabla \overline{aK_2^r} \vert a\in {{\mathbb {Z}}}^+\})、\(\Omega _2 = \{overline{aK_3 \cup 2(K_2\times K_3)}\vert a\in {{\mathbb {Z}}}^+ \}) and\(\Omega _3 = \{overline{aK_5 \cup (K_3\times K_3)}\vert a\in {{\mathbb {Z}}}^+ \})、其中 \({\overline{G}}\) 是 G 上的补算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New families of Laplacian borderenergetic graphs

New families of Laplacian borderenergetic graphs

Laplacian matrix and its spectrum are commonly used for giving a measure in networks in order to analyse its topological properties. In this paper, Laplacian matrix of graphs and their spectrum are studied. Laplacian energy of a graph G of order n is defined as \( \mathrm{{LE}}(G) = \sum _{i=1}^n|\lambda _i(L)-{\bar{d}}|\), where \(\lambda _i(L)\) is the i-th eigenvalue of Laplacian matrix of G, and \({\bar{d}}\) is their average. If \(\mathrm{{LE}}(G) = \mathrm{{LE}}(K_n)\) for the complete graph \(K_n\) of order n, then G is known as L-borderenergetic graph. In the first part of this paper, we construct three infinite families of non-complete disconnected L-borderenergetic graphs: \(\Lambda _1 = \{ G_{b,j,k} = [(((j-2)k-2j+2)b+1)K_{(j-1)k-(j-2)}] \cup b(K_j \times K_k)| b,j,k \in {{\mathbb {Z}}}^+\}\), \( \Lambda _2 = \{G_{2,b} = [K_6 \nabla b(K_2 \times K_3)] \cup (4b-2)K_9 | b\in {{\mathbb {Z}}}^+ \}\), \( \Lambda _3 = \{G_{3,b} = [bK_8 \nabla b(K_2 \times K_4)] \cup (14b-4)K_{8b+6} | b\in {{\mathbb {Z}}}^+ \}\), where \(\nabla \) is join operator and \(\times \) is direct product operator on graphs. Then, in the second part of this work, we construct new infinite families of non-complete connected L-borderenergetic graphs \(\Omega _1= \{K_2 \nabla \overline{aK_2^r} \vert a\in {{\mathbb {Z}}}^+\}\), \(\Omega _2 = \{\overline{aK_3 \cup 2(K_2\times K_3)}\vert a\in {{\mathbb {Z}}}^+ \}\) and \(\Omega _3 = \{\overline{aK_5 \cup (K_3\times K_3)}\vert a\in {{\mathbb {Z}}}^+ \}\), where \({\overline{G}}\) is the complement operator on G.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Informatica
Acta Informatica 工程技术-计算机:信息系统
CiteScore
2.40
自引率
16.70%
发文量
24
审稿时长
>12 weeks
期刊介绍: Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics. Topics of interest include: • semantics of programming languages • models and modeling languages for concurrent, distributed, reactive and mobile systems • models and modeling languages for timed, hybrid and probabilistic systems • specification, program analysis and verification • model checking and theorem proving • modal, temporal, first- and higher-order logics, and their variants • constraint logic, SAT/SMT-solving techniques • theoretical aspects of databases, semi-structured data and finite model theory • theoretical aspects of artificial intelligence, knowledge representation, description logic • automata theory, formal languages, term and graph rewriting • game-based models, synthesis • type theory, typed calculi • algebraic, coalgebraic and categorical methods • formal aspects of performance, dependability and reliability analysis • foundations of information and network security • parallel, distributed and randomized algorithms • design and analysis of algorithms • foundations of network and communication protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信