LTL 合理合成的复杂性

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Orna Kupferman, Noam Shenwald
{"title":"LTL 合理合成的复杂性","authors":"Orna Kupferman, Noam Shenwald","doi":"10.1145/3648473","DOIUrl":null,"url":null,"abstract":"<p>In <i>rational synthesis</i>, we automatically construct a reactive system that satisfies its specification in all rational environments, namely environments that have objectives and act to fulfill them. We complete the study of the complexity of LTL rational synthesis, when the objectives are given by formulas in Linear Temporal Logic. Our contribution is threefold. First, we tighten the known upper bounds for settings that were left open in earlier work. Second, our complexity analysis is parametric, and we describe tight upper and lower bounds in each of the problem parameters: the game graph, the objectives of the system components, and the objectives of the environment components. Third, we generalize the definition of rational synthesis by adding hostile players to the setting and by combining the cooperative and non-cooperative approaches studied in earlier work.</p>","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Complexity of LTL Rational Synthesis\",\"authors\":\"Orna Kupferman, Noam Shenwald\",\"doi\":\"10.1145/3648473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In <i>rational synthesis</i>, we automatically construct a reactive system that satisfies its specification in all rational environments, namely environments that have objectives and act to fulfill them. We complete the study of the complexity of LTL rational synthesis, when the objectives are given by formulas in Linear Temporal Logic. Our contribution is threefold. First, we tighten the known upper bounds for settings that were left open in earlier work. Second, our complexity analysis is parametric, and we describe tight upper and lower bounds in each of the problem parameters: the game graph, the objectives of the system components, and the objectives of the environment components. Third, we generalize the definition of rational synthesis by adding hostile players to the setting and by combining the cooperative and non-cooperative approaches studied in earlier work.</p>\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3648473\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3648473","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在理性合成中,我们自动构造一个反应系统,该系统在所有理性环境(即有目标并采取行动实现目标的环境)中都能满足其规范。当目标由线性时态逻辑中的公式给出时,我们完成了对 LTL 理性合成复杂性的研究。我们的贡献有三方面。首先,我们收紧了早期工作中尚未解决的已知设置上限。其次,我们的复杂性分析是参数化的,我们描述了每个问题参数的严格上界和下界:博弈图、系统组件的目标和环境组件的目标。第三,我们通过在环境中加入敌对玩家,并结合早期工作中研究的合作和非合作方法,对理性综合的定义进行了概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Complexity of LTL Rational Synthesis

In rational synthesis, we automatically construct a reactive system that satisfies its specification in all rational environments, namely environments that have objectives and act to fulfill them. We complete the study of the complexity of LTL rational synthesis, when the objectives are given by formulas in Linear Temporal Logic. Our contribution is threefold. First, we tighten the known upper bounds for settings that were left open in earlier work. Second, our complexity analysis is parametric, and we describe tight upper and lower bounds in each of the problem parameters: the game graph, the objectives of the system components, and the objectives of the environment components. Third, we generalize the definition of rational synthesis by adding hostile players to the setting and by combining the cooperative and non-cooperative approaches studied in earlier work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computational Logic
ACM Transactions on Computational Logic 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI). Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages. The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field. Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信