{"title":"多环芳烃对鱼类生物的生理影响","authors":"","doi":"10.3103/s0096392523700013","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>Every year, more than 1 million t of oil enter sea waters as a result of accidents during production or transportation; not counting oil products that enter the ocean with wastewater. The carcinogenic effect of oil components (such as benzopyrene) has been known since the middle of the 20th century. However, after a major oil spill from the <em>Exxon Valdez</em> tanker in 1989, it has become obvious that oil and its components have a strong toxic effect on the body of fish, and these effects are to a great extent mediated by polycyclic aromatic hydrocarbons (PAHs), in particular, by phenanthrene. The juvenile fish suffer the most from oil spills; they exhibit developmental anomalies when exposed to oil products. However, the influence of oil components is not limited to teratogenic effects and affects all age groups, causing disturbances in the functioning of nervous and cardiovascular systems (and other systems and organs) in adults. PAHs also change hormonal and osmotic regulation. As a result, the largest oil spills threaten populations of important commercial fish species. This review examines the effects of PAHs on the physiology of the main organ systems of fish, including both dysfunctions and malformations in young fish under the influence of petroleum products. Particular attention is paid to the cardiotoxic effects of di- and tricyclic PAHs, which were discovered recently and potentially both cause the death in animals when PAH enter water bodies and underlie developmental disorders.</p> </span>","PeriodicalId":19004,"journal":{"name":"Moscow University Biological Sciences Bulletin","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological Effects of Polycyclic Aromatic Hydrocarbons in Fish Organisms\",\"authors\":\"\",\"doi\":\"10.3103/s0096392523700013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>Every year, more than 1 million t of oil enter sea waters as a result of accidents during production or transportation; not counting oil products that enter the ocean with wastewater. The carcinogenic effect of oil components (such as benzopyrene) has been known since the middle of the 20th century. However, after a major oil spill from the <em>Exxon Valdez</em> tanker in 1989, it has become obvious that oil and its components have a strong toxic effect on the body of fish, and these effects are to a great extent mediated by polycyclic aromatic hydrocarbons (PAHs), in particular, by phenanthrene. The juvenile fish suffer the most from oil spills; they exhibit developmental anomalies when exposed to oil products. However, the influence of oil components is not limited to teratogenic effects and affects all age groups, causing disturbances in the functioning of nervous and cardiovascular systems (and other systems and organs) in adults. PAHs also change hormonal and osmotic regulation. As a result, the largest oil spills threaten populations of important commercial fish species. This review examines the effects of PAHs on the physiology of the main organ systems of fish, including both dysfunctions and malformations in young fish under the influence of petroleum products. Particular attention is paid to the cardiotoxic effects of di- and tricyclic PAHs, which were discovered recently and potentially both cause the death in animals when PAH enter water bodies and underlie developmental disorders.</p> </span>\",\"PeriodicalId\":19004,\"journal\":{\"name\":\"Moscow University Biological Sciences Bulletin\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Biological Sciences Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0096392523700013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Biological Sciences Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0096392523700013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Physiological Effects of Polycyclic Aromatic Hydrocarbons in Fish Organisms
Abstract
Every year, more than 1 million t of oil enter sea waters as a result of accidents during production or transportation; not counting oil products that enter the ocean with wastewater. The carcinogenic effect of oil components (such as benzopyrene) has been known since the middle of the 20th century. However, after a major oil spill from the Exxon Valdez tanker in 1989, it has become obvious that oil and its components have a strong toxic effect on the body of fish, and these effects are to a great extent mediated by polycyclic aromatic hydrocarbons (PAHs), in particular, by phenanthrene. The juvenile fish suffer the most from oil spills; they exhibit developmental anomalies when exposed to oil products. However, the influence of oil components is not limited to teratogenic effects and affects all age groups, causing disturbances in the functioning of nervous and cardiovascular systems (and other systems and organs) in adults. PAHs also change hormonal and osmotic regulation. As a result, the largest oil spills threaten populations of important commercial fish species. This review examines the effects of PAHs on the physiology of the main organ systems of fish, including both dysfunctions and malformations in young fish under the influence of petroleum products. Particular attention is paid to the cardiotoxic effects of di- and tricyclic PAHs, which were discovered recently and potentially both cause the death in animals when PAH enter water bodies and underlie developmental disorders.
期刊介绍:
Moscow University Biological Sciences Bulletin is forum for research in all important areas of modern biology. It publishes original work on qualitative, analytical and experimental aspects of research. The scope of articles to be considered includes plant biology, zoology, ecology, evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, gerontology, developmental biology, bioinformatics, bioengineering, virology, and microbiology.