I. A. Znamenskaya, E. Yu. Koroteeva, E. A. Karnozova, T. A. Kuli-Zade
{"title":"脉冲大电流放电加热通道区域热通量的动态变化","authors":"I. A. Znamenskaya, E. Yu. Koroteeva, E. A. Karnozova, T. A. Kuli-Zade","doi":"10.1134/s0018151x23010054","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The dynamics of thermal fields of dielectric surfaces heated as a result of initiation of a pulsed high-current surface discharge (plasma sheet) was studied. A pulsed surface discharge sliding along the surface of a dielectric was generated on the upper (flat) and lower (with a ledge) walls of the discharge chamber with quartz windows. Sequential images of optical (nanosecond range) and infrared (millisecond range) radiation were obtained near a dielectric ledge in the shape of a rectangular parallelepiped with a size of 6 × 2 × 48 mm<sup>3</sup>. The time evolution of thermal radiation from surfaces was recorded with time-lapse photography in the infrared range at pressures from 65 to 290 Torr. It is shown that the cooling time of a plasma-heated region localized near the dielectric ledge can last up to 30 ms and significantly exceeds the cooling time of a flat upper wall heated by a discharge fairly uniformly distributed over the surface of the dielectric.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Heat Fluxes in a Channel Area Heated by a Pulsed High-Current Discharge\",\"authors\":\"I. A. Znamenskaya, E. Yu. Koroteeva, E. A. Karnozova, T. A. Kuli-Zade\",\"doi\":\"10.1134/s0018151x23010054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The dynamics of thermal fields of dielectric surfaces heated as a result of initiation of a pulsed high-current surface discharge (plasma sheet) was studied. A pulsed surface discharge sliding along the surface of a dielectric was generated on the upper (flat) and lower (with a ledge) walls of the discharge chamber with quartz windows. Sequential images of optical (nanosecond range) and infrared (millisecond range) radiation were obtained near a dielectric ledge in the shape of a rectangular parallelepiped with a size of 6 × 2 × 48 mm<sup>3</sup>. The time evolution of thermal radiation from surfaces was recorded with time-lapse photography in the infrared range at pressures from 65 to 290 Torr. It is shown that the cooling time of a plasma-heated region localized near the dielectric ledge can last up to 30 ms and significantly exceeds the cooling time of a flat upper wall heated by a discharge fairly uniformly distributed over the surface of the dielectric.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23010054\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23010054","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Dynamics of Heat Fluxes in a Channel Area Heated by a Pulsed High-Current Discharge
Abstract
The dynamics of thermal fields of dielectric surfaces heated as a result of initiation of a pulsed high-current surface discharge (plasma sheet) was studied. A pulsed surface discharge sliding along the surface of a dielectric was generated on the upper (flat) and lower (with a ledge) walls of the discharge chamber with quartz windows. Sequential images of optical (nanosecond range) and infrared (millisecond range) radiation were obtained near a dielectric ledge in the shape of a rectangular parallelepiped with a size of 6 × 2 × 48 mm3. The time evolution of thermal radiation from surfaces was recorded with time-lapse photography in the infrared range at pressures from 65 to 290 Torr. It is shown that the cooling time of a plasma-heated region localized near the dielectric ledge can last up to 30 ms and significantly exceeds the cooling time of a flat upper wall heated by a discharge fairly uniformly distributed over the surface of the dielectric.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.