Jasper A. Vrugt, Jan W. Hopmans, Yifu Gao, Mehdi Rahmati, Jan Vanderborght, Harry Vereecken
求助PDF
{"title":"菲利普二项渗透方程的时间有效性:难以捉摸的理论量?","authors":"Jasper A. Vrugt, Jan W. Hopmans, Yifu Gao, Mehdi Rahmati, Jan Vanderborght, Harry Vereecken","doi":"10.1002/vzj2.20309","DOIUrl":null,"url":null,"abstract":"The two-term infiltration equation <mjx-container aria-label=\"upper I left parenthesis t right parenthesis equals upper S StartRoot t EndRoot plus upper A t\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"13,18\" data-semantic-content=\"5\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"upper I left parenthesis t right parenthesis equals upper S StartRoot t EndRoot plus upper A t\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"12,0\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"19\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"15,17\" data-semantic-content=\"9\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"6,8\" data-semantic-content=\"14\" data-semantic- data-semantic-parent=\"18\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msqrt data-semantic-children=\"7\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.189em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-box></mjx-sqrt></mjx-msqrt></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"18\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"10,11\" data-semantic-content=\"16\" data-semantic- data-semantic-parent=\"18\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"17\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/c8f6e2b7-8338-483a-ba8f-4d077e9b5291/vzj220309-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"13,18\" data-semantic-content=\"5\" data-semantic-role=\"equality\" data-semantic-speech=\"upper I left parenthesis t right parenthesis equals upper S StartRoot t EndRoot plus upper A t\" data-semantic-type=\"relseq\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"12,0\" data-semantic-parent=\"19\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">I</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"19\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-children=\"15,17\" data-semantic-content=\"9\" data-semantic-parent=\"19\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"6,8\" data-semantic-content=\"14\" data-semantic-parent=\"18\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">S</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><msqrt data-semantic-=\"\" data-semantic-children=\"7\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi></msqrt></mrow><mo data-semantic-=\"\" data-semantic-operator=\"infixop,+\" data-semantic-parent=\"18\" data-semantic-role=\"addition\" data-semantic-type=\"operator\">+</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"10,11\" data-semantic-content=\"16\" data-semantic-parent=\"18\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">A</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"17\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi></mrow></mrow></mrow>$I(t) = S\\sqrt {t} + A t$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is commonly used to determine the sorptivity, <mjx-container aria-label=\"upper S\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/56ece0ca-8055-41a9-a7c8-4f89faf4cf87/vzj220309-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\">S</mi>$S$</annotation></semantics></math></mjx-assistive-mml></mjx-container> <mjx-container aria-label=\"left parenthesis LT Superscript negative 1 divided by 2 Baseline right parenthesis\" ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"0,9\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis LT Superscript negative 1 divided by 2 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"1,7\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\"><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext><mjx-script style=\"vertical-align: 0.41em;\"><mjx-mrow data-semantic-children=\"6,5\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/37c8e8c5-b2e6-4a39-b112-1356fc2fec93/vzj220309-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-content=\"0,9\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis LT Superscript negative 1 divided by 2 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><msup data-semantic-=\"\" data-semantic-children=\"1,7\" data-semantic-parent=\"10\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\"><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"text\">LT</mtext><mrow data-semantic-=\"\" data-semantic-children=\"6,5\" data-semantic-content=\"4\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic-parent=\"7\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow></msup><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$({\\text{LT}}^{-1/2})$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, and product, <mjx-container aria-label=\"upper A equals c upper K Subscript normal s\" ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,7\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"upper A equals c upper K Subscript normal s\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.04em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/019884c4-f9a7-4c82-9237-4c70c0b24182/vzj220309-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,7\" data-semantic-content=\"1\" data-semantic-role=\"equality\" data-semantic-speech=\"upper A equals c upper K Subscript normal s\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">A</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"8\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic-parent=\"8\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">c</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">K</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">s</mi></msub></mrow></mrow>$A = c K_{\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> <mjx-container aria-label=\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\" ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"0,6\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"1,4\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\"><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext><mjx-script style=\"vertical-align: 0.41em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/600516fb-cc7f-4289-9668-3628c3147ab4/vzj220309-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"5\" data-semantic-content=\"0,6\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><msup data-semantic-=\"\" data-semantic-children=\"1,4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\"><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"text\">LT</mtext><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic-parent=\"5\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow></msup><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$({\\text{LT}}^{-1})$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, of the dimensionless multiple <mjx-container aria-label=\"c\" ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/6a22d802-286f-41f1-bd3b-34604629517e/vzj220309-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\">c</mi>$c$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and saturated soil hydraulic conductivity <mjx-container aria-label=\"upper K Subscript normal s\" ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K Subscript normal s\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.04em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/16520389-c03b-4f6e-a92c-1cbad06ab73b/vzj220309-math-0007.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K Subscript normal s\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">K</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">s</mi></msub>$K_{\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> <mjx-container aria-label=\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\" ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"0,6\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"1,4\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\"><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext><mjx-script style=\"vertical-align: 0.41em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/84565e12-b97b-4bee-9469-307f64c52852/vzj220309-math-0008.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"5\" data-semantic-content=\"0,6\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><msup data-semantic-=\"\" data-semantic-children=\"1,4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"superscript\"><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"text\">LT</mtext><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3\" data-semantic-content=\"2\" data-semantic-parent=\"5\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow></msup><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$({\\text{LT}}^{-1})$</annotation></semantics></math></mjx-assistive-mml></mjx-container> from cumulative vertical infiltration measurements <mjx-container aria-label=\"upper I overTilde Subscript 1 Baseline comma ellipsis comma upper I overTilde Subscript n Baseline\" ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"4,5,6,7,12\" data-semantic-content=\"5,7\" data-semantic- data-semantic-role=\"sequence\" data-semantic-speech=\"upper I overTilde Subscript 1 Baseline comma ellipsis comma upper I overTilde Subscript n Baseline\" data-semantic-type=\"punctuated\"><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.159em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.137em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"13\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"ellipsis\" data-semantic-type=\"text\"><mjx-c></mjx-c></mjx-mtext><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"13\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"10,11\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mover data-semantic-children=\"8,9\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.159em; margin-bottom: -0.133em;\"><mjx-mo data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\"padding-left: 0.137em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/0310d111-ee0a-4483-a2cd-b49573aac896/vzj220309-math-0009.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4,5,6,7,12\" data-semantic-content=\"5,7\" data-semantic-role=\"sequence\" data-semantic-speech=\"upper I overTilde Subscript 1 Baseline comma ellipsis comma upper I overTilde Subscript n Baseline\" data-semantic-type=\"punctuated\"><msub data-semantic-=\"\" data-semantic-children=\"2,3\" data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">I</mi><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></msub><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"13\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-parent=\"13\" data-semantic-role=\"ellipsis\" data-semantic-type=\"text\">…</mtext><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"13\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><msub data-semantic-=\"\" data-semantic-children=\"10,11\" data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"8,9\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">I</mi><mo data-semantic-=\"\" data-semantic-parent=\"10\" data-semantic-role=\"overaccent\" data-semantic-type=\"relation\">∼</mo></mover><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi></msub></mrow>$\\tilde{I}_{1},\\ldots,\\tilde{I}_{n}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> (L) at times <mjx-container aria-label=\"t 1 comma ellipsis comma t Subscript n Baseline\" ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,3,4,5,8\" data-semantic-content=\"3,5\" data-semantic- data-semantic-role=\"sequence\" data-semantic-speech=\"t 1 comma ellipsis comma t Subscript n Baseline\" data-semantic-type=\"punctuated\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"ellipsis\" data-semantic-type=\"text\"><mjx-c></mjx-c></mjx-mtext><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"6,7\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/a33fd372-2194-4ac9-964a-7079a9dcb50a/vzj220309-math-0010.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,3,4,5,8\" data-semantic-content=\"3,5\" data-semantic-role=\"sequence\" data-semantic-speech=\"t 1 comma ellipsis comma t Subscript n Baseline\" data-semantic-type=\"punctuated\"><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></msub><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-parent=\"9\" data-semantic-role=\"ellipsis\" data-semantic-type=\"text\">…</mtext><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><msub data-semantic-=\"\" data-semantic-children=\"6,7\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi></msub></mrow>$t_{1},\\ldots,t_{n}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> (T). This reduced form of the quasi-analytical power series solution of Richardson's equation of Philip enjoys a solid physical underpinning but at the expense of a limited time validity. Using simulated infiltration data, Jaiswal et al. have shown this time validity to equal about 2.5 cm of cumulative infiltration. The goals of this work are twofold. First, we investigate the extent to which cumulative infiltration measurements larger than 2.5 cm bias the estimates of <mjx-container aria-label=\"upper S\" ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/cb519ddf-db55-4c70-b9af-000e619eb0ce/vzj220309-math-0011.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\">S</mi>$S$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <mjx-container aria-label=\"upper K Subscript normal s\" ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K Subscript normal s\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.04em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/c9683026-8571-42dd-9908-9dbc3e321446/vzj220309-math-0012.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K Subscript normal s\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">K</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">s</mi></msub>$K_{\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Second, we investigate the impact of epistemic errors on the inferred time validities and parameters. Partial infiltration curves up to 2.5 cm of cumulative vertical infiltration improve substantially the agreement between actual and least squares estimates of <mjx-container aria-label=\"upper S\" ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/00c3ed65-dc58-4cf6-a9f7-db26c5a943cc/vzj220309-math-0013.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\">S</mi>$S$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <mjx-container aria-label=\"upper K Subscript normal s\" ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K Subscript normal s\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.04em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/3bb5862d-3ae0-4096-8430-4be58dd61342/vzj220309-math-0014.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K Subscript normal s\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">K</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">s</mi></msub>$K_{\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. But this only holds if the data generating infiltration process follows Richardson's equation and experimental conditions satisfy assumptions of soil homogeneity and a uniform initial water content. Otherwise, autocorrelated cumulative infiltration residuals will bias the least squares estimates of <mjx-container aria-label=\"upper S\" ctxtmenu_counter=\"14\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/ce212e70-b823-4f7b-8629-e08a53f313c9/vzj220309-math-0015.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S\" data-semantic-type=\"identifier\">S</mi>$S$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <mjx-container aria-label=\"upper K Subscript normal s\" ctxtmenu_counter=\"15\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K Subscript normal s\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.04em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/b11e111a-2dbc-4c3f-bf40-8c9b43cd1c89/vzj220309-math-0016.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K Subscript normal s\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">K</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">s</mi></msub>$K_{\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Our findings reiterate and reinvigorate earlier conclusions of Haverkamp et al. and show that epistemic errors deteriorate the physical significance of the coefficients of infiltration functions. As a result, the parameters of infiltration functions cannot simply be used in storm water and vadose zone flow models to forecast runoff and recharge at field and landscape scales unless these predictions are accompanied by realistic uncertainty bounds. We conclude that the time validity of Philip's two-term equation is an elusive theoretical quantity with arbitrary physical meaning.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The time validity of Philip's two-term infiltration equation: An elusive theoretical quantity?\",\"authors\":\"Jasper A. Vrugt, Jan W. Hopmans, Yifu Gao, Mehdi Rahmati, Jan Vanderborght, Harry Vereecken\",\"doi\":\"10.1002/vzj2.20309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-term infiltration equation <mjx-container aria-label=\\\"upper I left parenthesis t right parenthesis equals upper S StartRoot t EndRoot plus upper A t\\\" ctxtmenu_counter=\\\"0\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"13,18\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper I left parenthesis t right parenthesis equals upper S StartRoot t EndRoot plus upper A t\\\" data-semantic-type=\\\"relseq\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"12,0\\\" data-semantic- data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"2\\\" data-semantic-content=\\\"1,3\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"15,17\\\" data-semantic-content=\\\"9\\\" data-semantic- data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"infixop\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"6,8\\\" data-semantic-content=\\\"14\\\" data-semantic- data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msqrt data-semantic-children=\\\"7\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"sqrt\\\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\\\"padding-top: 0.189em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-box></mjx-sqrt></mjx-msqrt></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"4\\\" space=\\\"4\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"10,11\\\" data-semantic-content=\\\"16\\\" data-semantic- data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/c8f6e2b7-8338-483a-ba8f-4d077e9b5291/vzj220309-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"13,18\\\" data-semantic-content=\\\"5\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper I left parenthesis t right parenthesis equals upper S StartRoot t EndRoot plus upper A t\\\" data-semantic-type=\\\"relseq\\\"><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"12,0\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\">I</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"></mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2\\\" data-semantic-content=\\\"1,3\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">t</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"15,17\\\" data-semantic-content=\\\"9\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"infixop\\\"><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"6,8\\\" data-semantic-content=\\\"14\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">S</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"></mo><msqrt data-semantic-=\\\"\\\" data-semantic-children=\\\"7\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"sqrt\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">t</mi></msqrt></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\">+</mo><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"10,11\\\" data-semantic-content=\\\"16\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">A</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"></mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">t</mi></mrow></mrow></mrow>$I(t) = S\\\\sqrt {t} + A t$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is commonly used to determine the sorptivity, <mjx-container aria-label=\\\"upper S\\\" ctxtmenu_counter=\\\"1\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/56ece0ca-8055-41a9-a7c8-4f89faf4cf87/vzj220309-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\">S</mi>$S$</annotation></semantics></math></mjx-assistive-mml></mjx-container> <mjx-container aria-label=\\\"left parenthesis LT Superscript negative 1 divided by 2 Baseline right parenthesis\\\" ctxtmenu_counter=\\\"2\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"8\\\" data-semantic-content=\\\"0,9\\\" data-semantic- data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis LT Superscript negative 1 divided by 2 Baseline right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"1,7\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"superscript\\\"><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext><mjx-script style=\\\"vertical-align: 0.41em;\\\"><mjx-mrow data-semantic-children=\\\"6,5\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/37c8e8c5-b2e6-4a39-b112-1356fc2fec93/vzj220309-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"8\\\" data-semantic-content=\\\"0,9\\\" data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis LT Superscript negative 1 divided by 2 Baseline right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"1,7\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"superscript\\\"><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\">LT</mtext><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"6,5\\\" data-semantic-content=\\\"4\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\">−</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\">/</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></mrow></msup><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow>$({\\\\text{LT}}^{-1/2})$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, and product, <mjx-container aria-label=\\\"upper A equals c upper K Subscript normal s\\\" ctxtmenu_counter=\\\"3\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper A equals c upper K Subscript normal s\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"2,5\\\" data-semantic-content=\\\"6\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.04em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/019884c4-f9a7-4c82-9237-4c70c0b24182/vzj220309-math-0004.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper A equals c upper K Subscript normal s\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">A</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"2,5\\\" data-semantic-content=\\\"6\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">c</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"></mo><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">K</mi><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">s</mi></msub></mrow></mrow>$A = c K_{\\\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> <mjx-container aria-label=\\\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\\\" ctxtmenu_counter=\\\"4\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"5\\\" data-semantic-content=\\\"0,6\\\" data-semantic- data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"1,4\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"superscript\\\"><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext><mjx-script style=\\\"vertical-align: 0.41em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/600516fb-cc7f-4289-9668-3628c3147ab4/vzj220309-math-0005.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"5\\\" data-semantic-content=\\\"0,6\\\" data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"1,4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"superscript\\\"><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\">LT</mtext><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\">−</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></mrow></msup><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow>$({\\\\text{LT}}^{-1})$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, of the dimensionless multiple <mjx-container aria-label=\\\"c\\\" ctxtmenu_counter=\\\"5\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"c\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/6a22d802-286f-41f1-bd3b-34604629517e/vzj220309-math-0006.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"c\\\" data-semantic-type=\\\"identifier\\\">c</mi>$c$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and saturated soil hydraulic conductivity <mjx-container aria-label=\\\"upper K Subscript normal s\\\" ctxtmenu_counter=\\\"6\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper K Subscript normal s\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.04em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/16520389-c03b-4f6e-a92c-1cbad06ab73b/vzj220309-math-0007.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper K Subscript normal s\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">K</mi><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">s</mi></msub>$K_{\\\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> <mjx-container aria-label=\\\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\\\" ctxtmenu_counter=\\\"7\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"5\\\" data-semantic-content=\\\"0,6\\\" data-semantic- data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"1,4\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"superscript\\\"><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext><mjx-script style=\\\"vertical-align: 0.41em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/84565e12-b97b-4bee-9469-307f64c52852/vzj220309-math-0008.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"5\\\" data-semantic-content=\\\"0,6\\\" data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis LT Superscript negative 1 Baseline right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"1,4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"superscript\\\"><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\">LT</mtext><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"negative\\\" data-semantic-type=\\\"prefixop\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"prefixop,−\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\">−</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></mrow></msup><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow>$({\\\\text{LT}}^{-1})$</annotation></semantics></math></mjx-assistive-mml></mjx-container> from cumulative vertical infiltration measurements <mjx-container aria-label=\\\"upper I overTilde Subscript 1 Baseline comma ellipsis comma upper I overTilde Subscript n Baseline\\\" ctxtmenu_counter=\\\"8\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"4,5,6,7,12\\\" data-semantic-content=\\\"5,7\\\" data-semantic- data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"upper I overTilde Subscript 1 Baseline comma ellipsis comma upper I overTilde Subscript n Baseline\\\" data-semantic-type=\\\"punctuated\\\"><mjx-msub data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mover data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.105em; padding-left: 0.159em; margin-bottom: -0.133em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\\\"padding-left: 0.137em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"ellipsis\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c></mjx-mtext><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"10,11\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mover data-semantic-children=\\\"8,9\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.105em; padding-left: 0.159em; margin-bottom: -0.133em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base style=\\\"padding-left: 0.137em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/0310d111-ee0a-4483-a2cd-b49573aac896/vzj220309-math-0009.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"4,5,6,7,12\\\" data-semantic-content=\\\"5,7\\\" data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"upper I overTilde Subscript 1 Baseline comma ellipsis comma upper I overTilde Subscript n Baseline\\\" data-semantic-type=\\\"punctuated\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mover accent=\\\"true\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">I</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\">∼</mo></mover><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></msub><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"ellipsis\\\" data-semantic-type=\\\"text\\\">…</mtext><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"10,11\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mover accent=\\\"true\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"8,9\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">I</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"relation\\\">∼</mo></mover><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">n</mi></msub></mrow>$\\\\tilde{I}_{1},\\\\ldots,\\\\tilde{I}_{n}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> (L) at times <mjx-container aria-label=\\\"t 1 comma ellipsis comma t Subscript n Baseline\\\" ctxtmenu_counter=\\\"9\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"2,3,4,5,8\\\" data-semantic-content=\\\"3,5\\\" data-semantic- data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"t 1 comma ellipsis comma t Subscript n Baseline\\\" data-semantic-type=\\\"punctuated\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"ellipsis\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c></mjx-mtext><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"6,7\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/a33fd372-2194-4ac9-964a-7079a9dcb50a/vzj220309-math-0010.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3,4,5,8\\\" data-semantic-content=\\\"3,5\\\" data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"t 1 comma ellipsis comma t Subscript n Baseline\\\" data-semantic-type=\\\"punctuated\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">t</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></msub><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"ellipsis\\\" data-semantic-type=\\\"text\\\">…</mtext><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"6,7\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">t</mi><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">n</mi></msub></mrow>$t_{1},\\\\ldots,t_{n}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> (T). This reduced form of the quasi-analytical power series solution of Richardson's equation of Philip enjoys a solid physical underpinning but at the expense of a limited time validity. Using simulated infiltration data, Jaiswal et al. have shown this time validity to equal about 2.5 cm of cumulative infiltration. The goals of this work are twofold. First, we investigate the extent to which cumulative infiltration measurements larger than 2.5 cm bias the estimates of <mjx-container aria-label=\\\"upper S\\\" ctxtmenu_counter=\\\"10\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/cb519ddf-db55-4c70-b9af-000e619eb0ce/vzj220309-math-0011.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\">S</mi>$S$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <mjx-container aria-label=\\\"upper K Subscript normal s\\\" ctxtmenu_counter=\\\"11\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper K Subscript normal s\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.04em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/c9683026-8571-42dd-9908-9dbc3e321446/vzj220309-math-0012.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper K Subscript normal s\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">K</mi><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">s</mi></msub>$K_{\\\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Second, we investigate the impact of epistemic errors on the inferred time validities and parameters. Partial infiltration curves up to 2.5 cm of cumulative vertical infiltration improve substantially the agreement between actual and least squares estimates of <mjx-container aria-label=\\\"upper S\\\" ctxtmenu_counter=\\\"12\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/00c3ed65-dc58-4cf6-a9f7-db26c5a943cc/vzj220309-math-0013.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\">S</mi>$S$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <mjx-container aria-label=\\\"upper K Subscript normal s\\\" ctxtmenu_counter=\\\"13\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper K Subscript normal s\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.04em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/3bb5862d-3ae0-4096-8430-4be58dd61342/vzj220309-math-0014.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper K Subscript normal s\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">K</mi><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">s</mi></msub>$K_{\\\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. But this only holds if the data generating infiltration process follows Richardson's equation and experimental conditions satisfy assumptions of soil homogeneity and a uniform initial water content. Otherwise, autocorrelated cumulative infiltration residuals will bias the least squares estimates of <mjx-container aria-label=\\\"upper S\\\" ctxtmenu_counter=\\\"14\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/ce212e70-b823-4f7b-8629-e08a53f313c9/vzj220309-math-0015.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S\\\" data-semantic-type=\\\"identifier\\\">S</mi>$S$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <mjx-container aria-label=\\\"upper K Subscript normal s\\\" ctxtmenu_counter=\\\"15\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper K Subscript normal s\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.04em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/b11e111a-2dbc-4c3f-bf40-8c9b43cd1c89/vzj220309-math-0016.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper K Subscript normal s\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">K</mi><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">s</mi></msub>$K_{\\\\text{s}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Our findings reiterate and reinvigorate earlier conclusions of Haverkamp et al. and show that epistemic errors deteriorate the physical significance of the coefficients of infiltration functions. As a result, the parameters of infiltration functions cannot simply be used in storm water and vadose zone flow models to forecast runoff and recharge at field and landscape scales unless these predictions are accompanied by realistic uncertainty bounds. We conclude that the time validity of Philip's two-term equation is an elusive theoretical quantity with arbitrary physical meaning.\",\"PeriodicalId\":23594,\"journal\":{\"name\":\"Vadose Zone Journal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vadose Zone Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20309\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20309","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
引用
批量引用