半稳健效用偏好估值和稳健积分函数

Keita Owari
{"title":"半稳健效用偏好估值和稳健积分函数","authors":"Keita Owari","doi":"arxiv-2402.18872","DOIUrl":null,"url":null,"abstract":"We consider a discrete-time robust utility maximisation with semistatic\nstrategies, and the associated indifference prices of exotic options. For this\npurpose, we introduce a robust form of convex integral functionals on the space\nof bounded continuous functions on a Polish space, and establish some key\nregularity and representation results, in the spirit of the classical\nRockafellar theorem, in terms of the duality formed with the space of Borel\nmeasures. These results (together with the standard Fenchel duality and minimax\ntheorems) yield a duality for the robust utility maximisation problem as well\nas a representation of associated indifference prices, where the presence of\nstatic positions in the primal problem appears in the dual problem as a\nmarginal constraint on the martingale measures. Consequently, the resulting\nindifference prices are consistent with the observed prices of vanilla options.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semistatic robust utility indifference valuation and robust integral functionals\",\"authors\":\"Keita Owari\",\"doi\":\"arxiv-2402.18872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a discrete-time robust utility maximisation with semistatic\\nstrategies, and the associated indifference prices of exotic options. For this\\npurpose, we introduce a robust form of convex integral functionals on the space\\nof bounded continuous functions on a Polish space, and establish some key\\nregularity and representation results, in the spirit of the classical\\nRockafellar theorem, in terms of the duality formed with the space of Borel\\nmeasures. These results (together with the standard Fenchel duality and minimax\\ntheorems) yield a duality for the robust utility maximisation problem as well\\nas a representation of associated indifference prices, where the presence of\\nstatic positions in the primal problem appears in the dual problem as a\\nmarginal constraint on the martingale measures. Consequently, the resulting\\nindifference prices are consistent with the observed prices of vanilla options.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.18872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.18872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了具有半静态策略的离散时间稳健效用最大化,以及相关的奇异期权的无差异价格。为此,我们引入了波兰空间上有界连续函数空间上凸积分函数的稳健形式,并以经典的罗卡费拉尔定理(Rockafellar theorem)的精神,根据与博雷尔度量空间形成的对偶性,建立了一些关键的规则性和代表性结果。这些结果(连同标准的芬切尔对偶性和最小定理)产生了稳健效用最大化问题的对偶性,以及相关无差别价格的表示,其中原始问题中静态位置的存在在对偶问题中表现为对马廷格尔度量的边际约束。因此,所得到的差分价格与观察到的虚值期权价格是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semistatic robust utility indifference valuation and robust integral functionals
We consider a discrete-time robust utility maximisation with semistatic strategies, and the associated indifference prices of exotic options. For this purpose, we introduce a robust form of convex integral functionals on the space of bounded continuous functions on a Polish space, and establish some key regularity and representation results, in the spirit of the classical Rockafellar theorem, in terms of the duality formed with the space of Borel measures. These results (together with the standard Fenchel duality and minimax theorems) yield a duality for the robust utility maximisation problem as well as a representation of associated indifference prices, where the presence of static positions in the primal problem appears in the dual problem as a marginal constraint on the martingale measures. Consequently, the resulting indifference prices are consistent with the observed prices of vanilla options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信