具有弹性需求的动态多资源公平分配

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hao Guo, Weidong Li
{"title":"具有弹性需求的动态多资源公平分配","authors":"Hao Guo, Weidong Li","doi":"10.1007/s10723-024-09754-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study dynamic multi-resource maximin share fair allocation based on the elastic demands of users in a cloud computing system. In this problem, users do not stay in the computing system all the time. Users are assigned resources only if they stay in the system. To further improve the utilization of resources, the model in this paper allows users to dynamically select the method of processing tasks based on the resources allocated to each time slot. For this problem, we propose a mechanism called maximin share fairness with elastic demands (MMS-ED) in a cloud computing system. We prove theoretically that the allocation returned by the mechanism is a Lorenz-dominating allocation, that the allocation satisfies the cumulative maximin share fairness, and that the mechanism is Pareto efficiency, proportionality, and strategy-proofness. Within a specific setting, MMS-ED performs better, and it also satisfies another desirable property weighted envy-freeness. In addition, we designed an algorithm to realize this mechanism, conducted simulation experiments with Alibaba cluster traces, and we analyzed the impact from three perspectives of elastic demand and cumulative fairness. The experimental results show that the MMS-ED mechanism performs better than do the other three similar mechanisms in terms of resource utilization and user utility; moreover, the introduction of elastic demand and cumulative fairness can effectively improve resource utilization.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Multi-Resource Fair Allocation with Elastic Demands\",\"authors\":\"Hao Guo, Weidong Li\",\"doi\":\"10.1007/s10723-024-09754-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study dynamic multi-resource maximin share fair allocation based on the elastic demands of users in a cloud computing system. In this problem, users do not stay in the computing system all the time. Users are assigned resources only if they stay in the system. To further improve the utilization of resources, the model in this paper allows users to dynamically select the method of processing tasks based on the resources allocated to each time slot. For this problem, we propose a mechanism called maximin share fairness with elastic demands (MMS-ED) in a cloud computing system. We prove theoretically that the allocation returned by the mechanism is a Lorenz-dominating allocation, that the allocation satisfies the cumulative maximin share fairness, and that the mechanism is Pareto efficiency, proportionality, and strategy-proofness. Within a specific setting, MMS-ED performs better, and it also satisfies another desirable property weighted envy-freeness. In addition, we designed an algorithm to realize this mechanism, conducted simulation experiments with Alibaba cluster traces, and we analyzed the impact from three perspectives of elastic demand and cumulative fairness. The experimental results show that the MMS-ED mechanism performs better than do the other three similar mechanisms in terms of resource utilization and user utility; moreover, the introduction of elastic demand and cumulative fairness can effectively improve resource utilization.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-024-09754-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09754-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了云计算系统中基于用户弹性需求的动态多资源最大共享公平分配问题。在这个问题中,用户不会一直待在计算系统中。只有当用户留在系统中时,才会为其分配资源。为了进一步提高资源利用率,本文中的模型允许用户根据分配给每个时隙的资源动态选择处理任务的方法。针对这一问题,我们在云计算系统中提出了一种称为弹性需求最大化共享公平性(MMS-ED)的机制。我们从理论上证明了该机制返回的分配是洛伦兹主导分配,该分配满足累积最大化份额公平性,并且该机制具有帕累托效率、比例性和策略防错性。在特定情况下,MMS-ED 的表现更好,而且它还满足另一个理想的加权无嫉妒属性。此外,我们还设计了实现该机制的算法,利用阿里巴巴集群痕迹进行了仿真实验,并从弹性需求和累积公平性三个角度分析了其影响。实验结果表明,MMS-ED 机制在资源利用率和用户效用方面的表现优于其他三种类似机制;此外,引入弹性需求和累积公平性可以有效提高资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Multi-Resource Fair Allocation with Elastic Demands

In this paper, we study dynamic multi-resource maximin share fair allocation based on the elastic demands of users in a cloud computing system. In this problem, users do not stay in the computing system all the time. Users are assigned resources only if they stay in the system. To further improve the utilization of resources, the model in this paper allows users to dynamically select the method of processing tasks based on the resources allocated to each time slot. For this problem, we propose a mechanism called maximin share fairness with elastic demands (MMS-ED) in a cloud computing system. We prove theoretically that the allocation returned by the mechanism is a Lorenz-dominating allocation, that the allocation satisfies the cumulative maximin share fairness, and that the mechanism is Pareto efficiency, proportionality, and strategy-proofness. Within a specific setting, MMS-ED performs better, and it also satisfies another desirable property weighted envy-freeness. In addition, we designed an algorithm to realize this mechanism, conducted simulation experiments with Alibaba cluster traces, and we analyzed the impact from three perspectives of elastic demand and cumulative fairness. The experimental results show that the MMS-ED mechanism performs better than do the other three similar mechanisms in terms of resource utilization and user utility; moreover, the introduction of elastic demand and cumulative fairness can effectively improve resource utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信