{"title":"考虑推迟更换的连贯系统的预防性维护","authors":"Majid Asadi","doi":"10.1002/asmb.2851","DOIUrl":null,"url":null,"abstract":"<p>One primary objective of reliability engineering is to achieve optimal maintenance of technical systems, which ensures they remain in good operating condition. This paper proposes an age-based preventive optimal maintenance policy for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math>-component coherent systems. Under this proposed strategy, the system begins operating at <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ t=0 $$</annotation>\n </semantics></math> and undergoes preventative maintenance (PM) at a time <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {T}_p $$</annotation>\n </semantics></math>. If the system fails before <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {T}_p $$</annotation>\n </semantics></math>, it will be replaced with a new one. If the system is still functioning at time <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {T}_p $$</annotation>\n </semantics></math>, an assessment is made based on the number of failed components to determine whether the system should be replaced or allowed to continue operating. If the number of failures at <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {T}_p $$</annotation>\n </semantics></math> is below a predetermined threshold <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math>, the PM time <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {T}_p $$</annotation>\n </semantics></math> is postponed and a new PM time <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {T}_N $$</annotation>\n </semantics></math> will be scheduled, and the system continues operating in the interval <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$$ \\left({T}_p,{T}_N\\right) $$</annotation>\n </semantics></math>. Otherwise, the entire system is preventively replaced at <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {T}_p $$</annotation>\n </semantics></math> with a new one. In this scenario, we use a cost function to determine the optimal values of decision variables <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {T}_p $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {T}_N $$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math>. To examine the effectiveness of our proposed model, we analyze some examples of coherent systems using graphical and numerical methods.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventive maintenance for coherent systems considering postponed replacement\",\"authors\":\"Majid Asadi\",\"doi\":\"10.1002/asmb.2851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One primary objective of reliability engineering is to achieve optimal maintenance of technical systems, which ensures they remain in good operating condition. This paper proposes an age-based preventive optimal maintenance policy for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$$ n $$</annotation>\\n </semantics></math>-component coherent systems. Under this proposed strategy, the system begins operating at <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ t=0 $$</annotation>\\n </semantics></math> and undergoes preventative maintenance (PM) at a time <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {T}_p $$</annotation>\\n </semantics></math>. If the system fails before <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {T}_p $$</annotation>\\n </semantics></math>, it will be replaced with a new one. If the system is still functioning at time <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {T}_p $$</annotation>\\n </semantics></math>, an assessment is made based on the number of failed components to determine whether the system should be replaced or allowed to continue operating. If the number of failures at <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {T}_p $$</annotation>\\n </semantics></math> is below a predetermined threshold <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math>, the PM time <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {T}_p $$</annotation>\\n </semantics></math> is postponed and a new PM time <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {T}_N $$</annotation>\\n </semantics></math> will be scheduled, and the system continues operating in the interval <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ \\\\left({T}_p,{T}_N\\\\right) $$</annotation>\\n </semantics></math>. Otherwise, the entire system is preventively replaced at <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {T}_p $$</annotation>\\n </semantics></math> with a new one. In this scenario, we use a cost function to determine the optimal values of decision variables <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {T}_p $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {T}_N $$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math>. To examine the effectiveness of our proposed model, we analyze some examples of coherent systems using graphical and numerical methods.</p>\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2851\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2851","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Preventive maintenance for coherent systems considering postponed replacement
One primary objective of reliability engineering is to achieve optimal maintenance of technical systems, which ensures they remain in good operating condition. This paper proposes an age-based preventive optimal maintenance policy for -component coherent systems. Under this proposed strategy, the system begins operating at and undergoes preventative maintenance (PM) at a time . If the system fails before , it will be replaced with a new one. If the system is still functioning at time , an assessment is made based on the number of failed components to determine whether the system should be replaced or allowed to continue operating. If the number of failures at is below a predetermined threshold , the PM time is postponed and a new PM time will be scheduled, and the system continues operating in the interval . Otherwise, the entire system is preventively replaced at with a new one. In this scenario, we use a cost function to determine the optimal values of decision variables , , and . To examine the effectiveness of our proposed model, we analyze some examples of coherent systems using graphical and numerical methods.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.