{"title":"无序列分区的拉德马赫式精确公式","authors":"Walter Bridges, Kathrin Bringmann","doi":"10.1093/qmath/haad043","DOIUrl":null,"url":null,"abstract":"In this paper, we prove an exact formula for the number of partitions without sequences. By work of Andrews, the corresponding generating function is a mixed mock modular form weight of 0. The proof requires evaluating and bounding Kloosterman sums and the Circle Method.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"56 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rademacher-type exact formula for partitions without sequences\",\"authors\":\"Walter Bridges, Kathrin Bringmann\",\"doi\":\"10.1093/qmath/haad043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove an exact formula for the number of partitions without sequences. By work of Andrews, the corresponding generating function is a mixed mock modular form weight of 0. The proof requires evaluating and bounding Kloosterman sums and the Circle Method.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haad043\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haad043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Rademacher-type exact formula for partitions without sequences
In this paper, we prove an exact formula for the number of partitions without sequences. By work of Andrews, the corresponding generating function is a mixed mock modular form weight of 0. The proof requires evaluating and bounding Kloosterman sums and the Circle Method.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.