无序列分区的拉德马赫式精确公式

IF 0.6 4区 数学 Q3 MATHEMATICS
Walter Bridges, Kathrin Bringmann
{"title":"无序列分区的拉德马赫式精确公式","authors":"Walter Bridges, Kathrin Bringmann","doi":"10.1093/qmath/haad043","DOIUrl":null,"url":null,"abstract":"In this paper, we prove an exact formula for the number of partitions without sequences. By work of Andrews, the corresponding generating function is a mixed mock modular form weight of 0. The proof requires evaluating and bounding Kloosterman sums and the Circle Method.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"56 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rademacher-type exact formula for partitions without sequences\",\"authors\":\"Walter Bridges, Kathrin Bringmann\",\"doi\":\"10.1093/qmath/haad043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove an exact formula for the number of partitions without sequences. By work of Andrews, the corresponding generating function is a mixed mock modular form weight of 0. The proof requires evaluating and bounding Kloosterman sums and the Circle Method.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haad043\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haad043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了无序列分区数的精确公式。根据安德鲁斯的研究,相应的生成函数是一个权重为 0 的混合模拟模态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Rademacher-type exact formula for partitions without sequences
In this paper, we prove an exact formula for the number of partitions without sequences. By work of Andrews, the corresponding generating function is a mixed mock modular form weight of 0. The proof requires evaluating and bounding Kloosterman sums and the Circle Method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信