{"title":"智能车联网边缘计算网络 MEC 中的双深 Q 网络对决策略","authors":"Haotian Pang, Zhanwei Wang","doi":"10.1007/s10723-024-09752-8","DOIUrl":null,"url":null,"abstract":"<p>Advancing in communication systems requires nearby devices to act as networks when devices are not in use. Such technology is mobile edge computing, which provides enormous communication services in the network. In this research, we explore a multiuser smart Internet of Vehicles (IoV) network with mobile edge computing (MEC) assistance, where the first edge server can assist in completing the intense computing jobs from the vehicular users. Many currently available works for MEC networks primarily concentrate on minimising system latency to ensure the quality of service (QoS) for users by designing some offloading strategies. Still, they need to account for the retail prices from the server and, as a result, the budgetary constraints of the users. To solve this problem, we present a Dueling Double Deep Q Network (D3QN) with an Optimal Stopping Theory (OST) strategy that helps to solve the multi-task joint edge problems and minimises the offloading problems in MEC-based IoV networks. The multi-task-offloading model aims to increase the likelihood of offloading to the ideal servers by utilising the OST characteristics. Lastly, simulators show how the proposed methods perform better than the traditional ones. The findings demonstrate that the suggested offloading techniques may be successfully applied in mobile nodes and significantly cut the anticipated time required to process the workloads.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"34 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dueling Double Deep Q Network Strategy in MEC for Smart Internet of Vehicles Edge Computing Networks\",\"authors\":\"Haotian Pang, Zhanwei Wang\",\"doi\":\"10.1007/s10723-024-09752-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advancing in communication systems requires nearby devices to act as networks when devices are not in use. Such technology is mobile edge computing, which provides enormous communication services in the network. In this research, we explore a multiuser smart Internet of Vehicles (IoV) network with mobile edge computing (MEC) assistance, where the first edge server can assist in completing the intense computing jobs from the vehicular users. Many currently available works for MEC networks primarily concentrate on minimising system latency to ensure the quality of service (QoS) for users by designing some offloading strategies. Still, they need to account for the retail prices from the server and, as a result, the budgetary constraints of the users. To solve this problem, we present a Dueling Double Deep Q Network (D3QN) with an Optimal Stopping Theory (OST) strategy that helps to solve the multi-task joint edge problems and minimises the offloading problems in MEC-based IoV networks. The multi-task-offloading model aims to increase the likelihood of offloading to the ideal servers by utilising the OST characteristics. Lastly, simulators show how the proposed methods perform better than the traditional ones. The findings demonstrate that the suggested offloading techniques may be successfully applied in mobile nodes and significantly cut the anticipated time required to process the workloads.</p>\",\"PeriodicalId\":54817,\"journal\":{\"name\":\"Journal of Grid Computing\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Grid Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-024-09752-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09752-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Dueling Double Deep Q Network Strategy in MEC for Smart Internet of Vehicles Edge Computing Networks
Advancing in communication systems requires nearby devices to act as networks when devices are not in use. Such technology is mobile edge computing, which provides enormous communication services in the network. In this research, we explore a multiuser smart Internet of Vehicles (IoV) network with mobile edge computing (MEC) assistance, where the first edge server can assist in completing the intense computing jobs from the vehicular users. Many currently available works for MEC networks primarily concentrate on minimising system latency to ensure the quality of service (QoS) for users by designing some offloading strategies. Still, they need to account for the retail prices from the server and, as a result, the budgetary constraints of the users. To solve this problem, we present a Dueling Double Deep Q Network (D3QN) with an Optimal Stopping Theory (OST) strategy that helps to solve the multi-task joint edge problems and minimises the offloading problems in MEC-based IoV networks. The multi-task-offloading model aims to increase the likelihood of offloading to the ideal servers by utilising the OST characteristics. Lastly, simulators show how the proposed methods perform better than the traditional ones. The findings demonstrate that the suggested offloading techniques may be successfully applied in mobile nodes and significantly cut the anticipated time required to process the workloads.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.