求助PDF
{"title":"实值函数等周不等式及其在单调性检验中的应用","authors":"Hadley Black, Iden Kalemaj, Sofya Raskhodnikova","doi":"10.1002/rsa.21211","DOIUrl":null,"url":null,"abstract":"We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018) for Boolean functions to the case of real-valued functions <mjx-container aria-label=\"f colon StartSet 0 comma 1 EndSet Superscript d Baseline right arrow double struck upper R\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,1,13\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"sequence\" data-semantic-speech=\"f colon StartSet 0 comma 1 EndSet Superscript d Baseline right arrow double struck upper R\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"14\" data-semantic-role=\"colon\" data-semantic-type=\"punctuation\" rspace=\"2\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"10,12\" data-semantic-content=\"11\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"arrow\" data-semantic-type=\"relseq\"><mjx-msup data-semantic-children=\"8,9\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"set collection\" data-semantic-type=\"superscript\"><mjx-mrow data-semantic-children=\"7\" data-semantic-content=\"2,6\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"set collection\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"3,4,5\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: 0.477em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\"relseq,→\" data-semantic-parent=\"13\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/bdffdf9d-54fa-42c8-865a-92210048e095/rsa21211-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,1,13\" data-semantic-content=\"1\" data-semantic-role=\"sequence\" data-semantic-speech=\"f colon StartSet 0 comma 1 EndSet Superscript d Baseline right arrow double struck upper R\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">f</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"14\" data-semantic-role=\"colon\" data-semantic-type=\"punctuation\">:</mo><mrow data-semantic-=\"\" data-semantic-children=\"10,12\" data-semantic-content=\"11\" data-semantic-parent=\"14\" data-semantic-role=\"arrow\" data-semantic-type=\"relseq\"><msup data-semantic-=\"\" data-semantic-children=\"8,9\" data-semantic-parent=\"13\" data-semantic-role=\"set collection\" data-semantic-type=\"superscript\"><mrow data-semantic-=\"\" data-semantic-children=\"7\" data-semantic-content=\"2,6\" data-semantic-parent=\"10\" data-semantic-role=\"set collection\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">{</mo><mrow data-semantic-=\"\" data-semantic-children=\"3,4,5\" data-semantic-content=\"4\" data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">}</mo></mrow><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></mrow></msup><mo data-semantic-=\"\" data-semantic-operator=\"relseq,→\" data-semantic-parent=\"13\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\">→</mo><mi data-semantic-=\"\" data-semantic-font=\"double-struck\" data-semantic-parent=\"13\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\">ℝ</mi></mrow></mrow>$$ f:{\\left\\{0,1\\right\\}}^d\\to \\mathbb{R} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Our main tool in the proof of the generalized inequality is a new Boolean decomposition that represents every real-valued function <mjx-container aria-label=\"f\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/186b4de7-db42-44c7-8297-f7d62e69170a/rsa21211-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\">f</mi></mrow>$$ f $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain, roughly capturing the distance of <mjx-container aria-label=\"f\" ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/e41d3691-5a77-4c6a-a619-d244b80e4e09/rsa21211-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\">f</mi></mrow>$$ f $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> to monotonicity and the structure of violations of <mjx-container aria-label=\"f\" ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/944f72e7-676c-46a2-a9c6-748d2092018c/rsa21211-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\">f</mi></mrow>$$ f $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> to monotonicity. We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has query complexity <mjx-container aria-label=\"ModifyingAbove upper O With tilde left parenthesis min left parenthesis r StartRoot d EndRoot comma d right parenthesis right parenthesis\" ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,19\" data-semantic-content=\"20,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"ModifyingAbove upper O With tilde left parenthesis min left parenthesis r StartRoot d EndRoot comma d right parenthesis right parenthesis\" data-semantic-type=\"appl\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"simple function\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.465em; margin-bottom: -0.597em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.278em;\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"2\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-base></mjx-mover><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"21\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"18\" data-semantic-content=\"3,12\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"19\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,16\" data-semantic-content=\"17,4\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"limit function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"limit function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"15\" data-semantic-content=\"5,11\" data-semantic- data-semantic-parent=\"18\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"14,9,10\" data-semantic-content=\"9\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"6,8\" data-semantic-content=\"13\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msqrt data-semantic-children=\"7\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.156em;\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-box></mjx-sqrt></mjx-msqrt></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"19\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/9a7a7f4c-8c16-43fe-a078-f7f07aa3aa4d/rsa21211-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,19\" data-semantic-content=\"20,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"ModifyingAbove upper O With tilde left parenthesis min left parenthesis r StartRoot d EndRoot comma d right parenthesis right parenthesis\" data-semantic-type=\"appl\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"21\" data-semantic-role=\"simple function\" data-semantic-type=\"overscore\"><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"2\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">O</mi></mrow><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\">˜</mo></mover><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"21\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"18\" data-semantic-content=\"3,12\" data-semantic-parent=\"21\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"19\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"4,16\" data-semantic-content=\"17,4\" data-semantic-parent=\"19\" data-semantic-role=\"limit function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"limit function\" data-semantic-type=\"function\">min</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"15\" data-semantic-content=\"5,11\" data-semantic-parent=\"18\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"14,9,10\" data-semantic-content=\"9\" data-semantic-parent=\"16\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"6,8\" data-semantic-content=\"13\" data-semantic-parent=\"15\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">r</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><msqrt data-semantic-=\"\" data-semantic-children=\"7\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></mrow></msqrt></mrow><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"19\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ \\tilde{O}\\left(\\min \\left(r\\sqrt{d},d\\right)\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, where <mjx-container aria-label=\"r\" ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"r\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/bf1bbdf8-215d-4cb4-af90-c8c6d2fcec27/rsa21211-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"r\" data-semantic-type=\"identifier\">r</mi></mrow>$$ r $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is the size of the image of the input function. (The best previously known tester makes <mjx-container aria-label=\"upper O left parenthesis d right parenthesis\" ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis d right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/3dbf39bb-2d04-4da4-9816-b92ac1474d9b/rsa21211-math-0007.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis d right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">O</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ O(d) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> queries, as shown by Chakrabarty and Seshadhri (STOC 2013).) Our tester is nonadaptive and has 1-sided error. We prove a matching lower bound for nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that are <mjx-container aria-label=\"alpha\" ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/182f8380-3c47-44b5-8f5f-8d35c014cb8a/rsa21211-math-0008.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\">α</mi></mrow>$$ \\alpha $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-far from monotone can be approximated nonadaptively within a factor of <mjx-container aria-label=\"upper O left parenthesis StartRoot d log d EndRoot right parenthesis\" ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,11\" data-semantic-content=\"12,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis StartRoot d log d EndRoot right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"1,10\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msqrt data-semantic-children=\"8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.158em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,6\" data-semantic-content=\"7\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3,4\" data-semantic-content=\"5,3\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-box></mjx-sqrt></mjx-msqrt><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/6c5a1586-1e6e-4579-b346-9165073a4659/rsa21211-math-0009.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,11\" data-semantic-content=\"12,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis StartRoot d log d EndRoot right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">O</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"9\" data-semantic-content=\"1,10\" data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><msqrt data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,6\" data-semantic-content=\"7\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3,4\" data-semantic-content=\"5,3\" data-semantic-parent=\"8\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\">log</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></mrow></mrow></msqrt><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ O\\left(\\sqrt{d\\log d}\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> with query complexity polynomial in <mjx-container aria-label=\"1 divided by alpha\" ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"division\" data-semantic-speech=\"1 divided by alpha\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/4fdd2bb6-65a3-49d3-aa08-980985e1a5ca/rsa21211-math-0010.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"division\" data-semantic-speech=\"1 divided by alpha\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\" stretchy=\"false\">/</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi></mrow>$$ 1/\\alpha $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and the dimension <mjx-container aria-label=\"d\" ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/767d7501-04f9-4d67-bfaa-e5675b2fb4b0/rsa21211-math-0011.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\">d</mi></mrow>$$ d $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. This query complexity is nearly optimal for nonadaptive algorithms even for the special case of Boolean functions (The best previously known distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves <mjx-container aria-label=\"upper O left parenthesis d log r right parenthesis\" ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,10\" data-semantic-content=\"11,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis d log r right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"12\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"12\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"1,5\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,7\" data-semantic-content=\"8\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3,4\" data-semantic-content=\"6,3\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/fe3b6363-88d6-416a-b6e3-e60c49136485/rsa21211-math-0012.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,10\" data-semantic-content=\"11,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis d log r right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"12\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">O</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"12\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"9\" data-semantic-content=\"1,5\" data-semantic-parent=\"12\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,7\" data-semantic-content=\"8\" data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3,4\" data-semantic-content=\"6,3\" data-semantic-parent=\"9\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\">log</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">r</mi></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ O\\left(d\\log r\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-approximation.).","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isoperimetric inequalities for real-valued functions with applications to monotonicity testing\",\"authors\":\"Hadley Black, Iden Kalemaj, Sofya Raskhodnikova\",\"doi\":\"10.1002/rsa.21211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018) for Boolean functions to the case of real-valued functions <mjx-container aria-label=\\\"f colon StartSet 0 comma 1 EndSet Superscript d Baseline right arrow double struck upper R\\\" ctxtmenu_counter=\\\"0\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,1,13\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"f colon StartSet 0 comma 1 EndSet Superscript d Baseline right arrow double struck upper R\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"colon\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"2\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"10,12\\\" data-semantic-content=\\\"11\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"arrow\\\" data-semantic-type=\\\"relseq\\\"><mjx-msup data-semantic-children=\\\"8,9\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"set collection\\\" data-semantic-type=\\\"superscript\\\"><mjx-mrow data-semantic-children=\\\"7\\\" data-semantic-content=\\\"2,6\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"set collection\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"3,4,5\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\\\"vertical-align: 0.477em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,→\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"arrow\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\\\"double-struck\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/bdffdf9d-54fa-42c8-865a-92210048e095/rsa21211-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1,13\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"f colon StartSet 0 comma 1 EndSet Superscript d Baseline right arrow double struck upper R\\\" data-semantic-type=\\\"punctuated\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">f</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"colon\\\" data-semantic-type=\\\"punctuation\\\">:</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"10,12\\\" data-semantic-content=\\\"11\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"arrow\\\" data-semantic-type=\\\"relseq\\\"><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"8,9\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"set collection\\\" data-semantic-type=\\\"superscript\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"7\\\" data-semantic-content=\\\"2,6\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"set collection\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">{</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4,5\\\" data-semantic-content=\\\"4\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">0</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">}</mo></mrow><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">d</mi></mrow></msup><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,→\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"arrow\\\" data-semantic-type=\\\"relation\\\">→</mo><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"double-struck\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"identifier\\\">ℝ</mi></mrow></mrow>$$ f:{\\\\left\\\\{0,1\\\\right\\\\}}^d\\\\to \\\\mathbb{R} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Our main tool in the proof of the generalized inequality is a new Boolean decomposition that represents every real-valued function <mjx-container aria-label=\\\"f\\\" ctxtmenu_counter=\\\"1\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"f\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/186b4de7-db42-44c7-8297-f7d62e69170a/rsa21211-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"f\\\" data-semantic-type=\\\"identifier\\\">f</mi></mrow>$$ f $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain, roughly capturing the distance of <mjx-container aria-label=\\\"f\\\" ctxtmenu_counter=\\\"2\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"f\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/e41d3691-5a77-4c6a-a619-d244b80e4e09/rsa21211-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"f\\\" data-semantic-type=\\\"identifier\\\">f</mi></mrow>$$ f $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> to monotonicity and the structure of violations of <mjx-container aria-label=\\\"f\\\" ctxtmenu_counter=\\\"3\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"f\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/944f72e7-676c-46a2-a9c6-748d2092018c/rsa21211-math-0004.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"f\\\" data-semantic-type=\\\"identifier\\\">f</mi></mrow>$$ f $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> to monotonicity. We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has query complexity <mjx-container aria-label=\\\"ModifyingAbove upper O With tilde left parenthesis min left parenthesis r StartRoot d EndRoot comma d right parenthesis right parenthesis\\\" ctxtmenu_counter=\\\"4\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"2,19\\\" data-semantic-content=\\\"20,0\\\" data-semantic- data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"ModifyingAbove upper O With tilde left parenthesis min left parenthesis r StartRoot d EndRoot comma d right parenthesis right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mjx-mover data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.105em; padding-left: 0.465em; margin-bottom: -0.597em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0px; margin-left: -0.278em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-base></mjx-mover><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"18\\\" data-semantic-content=\\\"3,12\\\" data-semantic- data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"4,16\\\" data-semantic-content=\\\"17,4\\\" data-semantic- data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"limit function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"limit function\\\" data-semantic-type=\\\"function\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"15\\\" data-semantic-content=\\\"5,11\\\" data-semantic- data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"14,9,10\\\" data-semantic-content=\\\"9\\\" data-semantic- data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"6,8\\\" data-semantic-content=\\\"13\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msqrt data-semantic-children=\\\"7\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"sqrt\\\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\\\"padding-top: 0.156em;\\\"><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-box></mjx-sqrt></mjx-msqrt></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/9a7a7f4c-8c16-43fe-a078-f7f07aa3aa4d/rsa21211-math-0005.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,19\\\" data-semantic-content=\\\"20,0\\\" data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"ModifyingAbove upper O With tilde left parenthesis min left parenthesis r StartRoot d EndRoot comma d right parenthesis right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mover accent=\\\"true\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"overscore\\\"><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\">O</mi></mrow><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"operator\\\">˜</mo></mover><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"></mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"18\\\" data-semantic-content=\\\"3,12\\\" data-semantic-parent=\\\"21\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"4,16\\\" data-semantic-content=\\\"17,4\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"limit function\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"limit function\\\" data-semantic-type=\\\"function\\\">min</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"></mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"15\\\" data-semantic-content=\\\"5,11\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"14,9,10\\\" data-semantic-content=\\\"9\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"6,8\\\" data-semantic-content=\\\"13\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">r</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"></mo><msqrt data-semantic-=\\\"\\\" data-semantic-children=\\\"7\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"sqrt\\\"><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">d</mi></mrow></msqrt></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">d</mi></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"19\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow>$$ \\\\tilde{O}\\\\left(\\\\min \\\\left(r\\\\sqrt{d},d\\\\right)\\\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, where <mjx-container aria-label=\\\"r\\\" ctxtmenu_counter=\\\"5\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"r\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/bf1bbdf8-215d-4cb4-af90-c8c6d2fcec27/rsa21211-math-0006.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"r\\\" data-semantic-type=\\\"identifier\\\">r</mi></mrow>$$ r $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is the size of the image of the input function. (The best previously known tester makes <mjx-container aria-label=\\\"upper O left parenthesis d right parenthesis\\\" ctxtmenu_counter=\\\"6\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"5,0\\\" data-semantic- data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper O left parenthesis d right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"2\\\" data-semantic-content=\\\"1,3\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/3dbf39bb-2d04-4da4-9816-b92ac1474d9b/rsa21211-math-0007.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"5,0\\\" data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper O left parenthesis d right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\">O</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"></mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2\\\" data-semantic-content=\\\"1,3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">d</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow>$$ O(d) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> queries, as shown by Chakrabarty and Seshadhri (STOC 2013).) Our tester is nonadaptive and has 1-sided error. We prove a matching lower bound for nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that are <mjx-container aria-label=\\\"alpha\\\" ctxtmenu_counter=\\\"7\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"alpha\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/182f8380-3c47-44b5-8f5f-8d35c014cb8a/rsa21211-math-0008.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"alpha\\\" data-semantic-type=\\\"identifier\\\">α</mi></mrow>$$ \\\\alpha $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-far from monotone can be approximated nonadaptively within a factor of <mjx-container aria-label=\\\"upper O left parenthesis StartRoot d log d EndRoot right parenthesis\\\" ctxtmenu_counter=\\\"8\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,11\\\" data-semantic-content=\\\"12,0\\\" data-semantic- data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper O left parenthesis StartRoot d log d EndRoot right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"9\\\" data-semantic-content=\\\"1,10\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msqrt data-semantic-children=\\\"8\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"sqrt\\\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\\\"padding-top: 0.158em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"2,6\\\" data-semantic-content=\\\"7\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3,4\\\" data-semantic-content=\\\"5,3\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"function\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-box></mjx-sqrt></mjx-msqrt><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/6c5a1586-1e6e-4579-b346-9165073a4659/rsa21211-math-0009.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,11\\\" data-semantic-content=\\\"12,0\\\" data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper O left parenthesis StartRoot d log d EndRoot right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\">O</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"></mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"9\\\" data-semantic-content=\\\"1,10\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><msqrt data-semantic-=\\\"\\\" data-semantic-children=\\\"8\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"sqrt\\\"><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"2,6\\\" data-semantic-content=\\\"7\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">d</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"></mo><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3,4\\\" data-semantic-content=\\\"5,3\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"function\\\">log</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"></mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">d</mi></mrow></mrow></msqrt><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow>$$ O\\\\left(\\\\sqrt{d\\\\log d}\\\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> with query complexity polynomial in <mjx-container aria-label=\\\"1 divided by alpha\\\" ctxtmenu_counter=\\\"9\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"division\\\" data-semantic-speech=\\\"1 divided by alpha\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/4fdd2bb6-65a3-49d3-aa08-980985e1a5ca/rsa21211-math-0010.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"division\\\" data-semantic-speech=\\\"1 divided by alpha\\\" data-semantic-type=\\\"infixop\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" stretchy=\\\"false\\\">/</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">α</mi></mrow>$$ 1/\\\\alpha $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and the dimension <mjx-container aria-label=\\\"d\\\" ctxtmenu_counter=\\\"10\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/767d7501-04f9-4d67-bfaa-e5675b2fb4b0/rsa21211-math-0011.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\">d</mi></mrow>$$ d $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. This query complexity is nearly optimal for nonadaptive algorithms even for the special case of Boolean functions (The best previously known distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves <mjx-container aria-label=\\\"upper O left parenthesis d log r right parenthesis\\\" ctxtmenu_counter=\\\"11\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,10\\\" data-semantic-content=\\\"11,0\\\" data-semantic- data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper O left parenthesis d log r right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"9\\\" data-semantic-content=\\\"1,5\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"2,7\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3,4\\\" data-semantic-content=\\\"6,3\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"function\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/fe3b6363-88d6-416a-b6e3-e60c49136485/rsa21211-math-0012.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,10\\\" data-semantic-content=\\\"11,0\\\" data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper O left parenthesis d log r right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\">O</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"></mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"9\\\" data-semantic-content=\\\"1,5\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"2,7\\\" data-semantic-content=\\\"8\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">d</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"></mo><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"3,4\\\" data-semantic-content=\\\"6,3\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-font=\\\"normal\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"function\\\">log</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"></mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">r</mi></mrow></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow>$$ O\\\\left(d\\\\log r\\\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-approximation.).\",\"PeriodicalId\":20948,\"journal\":{\"name\":\"Random Structures and Algorithms\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用