半线性椭圆方程的深里兹方法分析

IF 1.9 4区 数学 Q1 MATHEMATICS
Mo Chen,Yuling Jiao,Xiliang Lu,Pengcheng Song,Fengru Wang, Jerry Zhijian Yang
{"title":"半线性椭圆方程的深里兹方法分析","authors":"Mo Chen,Yuling Jiao,Xiliang Lu,Pengcheng Song,Fengru Wang, Jerry Zhijian Yang","doi":"10.4208/nmtma.oa-2023-0058","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for solving semilinear elliptical equations using a ResNet with ${\\rm ReLU}^2$ activations. Firstly, we present a comprehensive\nformulation based on the penalized variational form of the elliptical equations. We\nthen apply the Deep Ritz Method, which works for a wide range of equations. We\nobtain an upper bound on the errors between the acquired solutions and the true\nsolutions in terms of the depth $\\mathcal{D},$ width $\\mathcal{W}$ of the ${\\rm ReLU}^2$ ResNet, and the number of training samples $n.$ Our simulation results demonstrate that our method can\neffectively overcome the curse of dimensionality and validate the theoretical results.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":"51 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Deep Ritz Methods for Semilinear Elliptic Equations\",\"authors\":\"Mo Chen,Yuling Jiao,Xiliang Lu,Pengcheng Song,Fengru Wang, Jerry Zhijian Yang\",\"doi\":\"10.4208/nmtma.oa-2023-0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for solving semilinear elliptical equations using a ResNet with ${\\\\rm ReLU}^2$ activations. Firstly, we present a comprehensive\\nformulation based on the penalized variational form of the elliptical equations. We\\nthen apply the Deep Ritz Method, which works for a wide range of equations. We\\nobtain an upper bound on the errors between the acquired solutions and the true\\nsolutions in terms of the depth $\\\\mathcal{D},$ width $\\\\mathcal{W}$ of the ${\\\\rm ReLU}^2$ ResNet, and the number of training samples $n.$ Our simulation results demonstrate that our method can\\neffectively overcome the curse of dimensionality and validate the theoretical results.\",\"PeriodicalId\":51146,\"journal\":{\"name\":\"Numerical Mathematics-Theory Methods and Applications\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Mathematics-Theory Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/nmtma.oa-2023-0058\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2023-0058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种使用具有 ${rm ReLU}^2$ 激活的 ResNet 来求解半线性椭圆方程的方法。首先,我们基于椭圆方程的惩罚变分形式提出了一个综合公式。然后,我们应用了适用于多种方程的深度里兹方法。我们根据{rm ReLU}^2$ResNet的深度$\mathcal{D}、宽度$\mathcal{W}$和训练样本数$n$,得出了获得的解与真实解之间的误差上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Deep Ritz Methods for Semilinear Elliptic Equations
In this paper, we propose a method for solving semilinear elliptical equations using a ResNet with ${\rm ReLU}^2$ activations. Firstly, we present a comprehensive formulation based on the penalized variational form of the elliptical equations. We then apply the Deep Ritz Method, which works for a wide range of equations. We obtain an upper bound on the errors between the acquired solutions and the true solutions in terms of the depth $\mathcal{D},$ width $\mathcal{W}$ of the ${\rm ReLU}^2$ ResNet, and the number of training samples $n.$ Our simulation results demonstrate that our method can effectively overcome the curse of dimensionality and validate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信