Jianze Ren, Chi Zhang, Miao Yang, Liming Yuan, Na Sang, Jianhua Yao
{"title":"长冲程 4-PPR 兼容并联机构的建模与控制","authors":"Jianze Ren, Chi Zhang, Miao Yang, Liming Yuan, Na Sang, Jianhua Yao","doi":"10.1007/s41315-023-00313-y","DOIUrl":null,"url":null,"abstract":"<p>Long-stroke compliant parallel mechanisms (CPMs) are widely used in precision applications. However, stress stiffening and sensitivity to external disturbances in CPMs present challenges in the design of controller. In this paper, the nonlinear stiffness model of the stage is established which is incorporated into the dynamic model. In particular, the method of adaptive nonsingular fast terminal sliding mode control (ANFTSMC) is developed based on the dynamic model. This method addresses the problems of the system parameter uncertainty and the slow convergence of traditional sliding mode control (SMC) at the equilibrium point. The stability of the presented ANFTSMC strategy has been proved based on the Lyapunov analysis. Finally, the proposed control architecture is implemented on the designed 4-prismatic-prismatic-revolute (4-PPR) CPM. The results demonstrate that the developed method exhibits excellent tracking accuracy and robustness compared to the traditional linear sliding mode control (LSMC) and proportional-integral-derivative (PID) control.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"310 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and control for a long-stroke 4-PPR compliant parallel mechanism\",\"authors\":\"Jianze Ren, Chi Zhang, Miao Yang, Liming Yuan, Na Sang, Jianhua Yao\",\"doi\":\"10.1007/s41315-023-00313-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Long-stroke compliant parallel mechanisms (CPMs) are widely used in precision applications. However, stress stiffening and sensitivity to external disturbances in CPMs present challenges in the design of controller. In this paper, the nonlinear stiffness model of the stage is established which is incorporated into the dynamic model. In particular, the method of adaptive nonsingular fast terminal sliding mode control (ANFTSMC) is developed based on the dynamic model. This method addresses the problems of the system parameter uncertainty and the slow convergence of traditional sliding mode control (SMC) at the equilibrium point. The stability of the presented ANFTSMC strategy has been proved based on the Lyapunov analysis. Finally, the proposed control architecture is implemented on the designed 4-prismatic-prismatic-revolute (4-PPR) CPM. The results demonstrate that the developed method exhibits excellent tracking accuracy and robustness compared to the traditional linear sliding mode control (LSMC) and proportional-integral-derivative (PID) control.</p>\",\"PeriodicalId\":44563,\"journal\":{\"name\":\"International Journal of Intelligent Robotics and Applications\",\"volume\":\"310 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Robotics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41315-023-00313-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-023-00313-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Modeling and control for a long-stroke 4-PPR compliant parallel mechanism
Long-stroke compliant parallel mechanisms (CPMs) are widely used in precision applications. However, stress stiffening and sensitivity to external disturbances in CPMs present challenges in the design of controller. In this paper, the nonlinear stiffness model of the stage is established which is incorporated into the dynamic model. In particular, the method of adaptive nonsingular fast terminal sliding mode control (ANFTSMC) is developed based on the dynamic model. This method addresses the problems of the system parameter uncertainty and the slow convergence of traditional sliding mode control (SMC) at the equilibrium point. The stability of the presented ANFTSMC strategy has been proved based on the Lyapunov analysis. Finally, the proposed control architecture is implemented on the designed 4-prismatic-prismatic-revolute (4-PPR) CPM. The results demonstrate that the developed method exhibits excellent tracking accuracy and robustness compared to the traditional linear sliding mode control (LSMC) and proportional-integral-derivative (PID) control.
期刊介绍:
The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications