薛定谔电位的弱半凸估计和薛定谔桥的对数索波列夫不等式

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Giovanni Conforti
{"title":"薛定谔电位的弱半凸估计和薛定谔桥的对数索波列夫不等式","authors":"Giovanni Conforti","doi":"10.1007/s00440-024-01264-6","DOIUrl":null,"url":null,"abstract":"<p>We investigate the quadratic Schrödinger bridge problem, a.k.a. Entropic Optimal Transport problem, and obtain weak semiconvexity and semiconcavity bounds on Schrödinger potentials under mild assumptions on the marginals that are substantially weaker than log-concavity. We deduce from these estimates that Schrödinger bridges satisfy a logarithmic Sobolev inequality on the product space. Our proof strategy is based on a second order analysis of coupling by reflection on the characteristics of the Hamilton–Jacobi–Bellman equation that reveals the existence of new classes of invariant functions for the corresponding flow.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges\",\"authors\":\"Giovanni Conforti\",\"doi\":\"10.1007/s00440-024-01264-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the quadratic Schrödinger bridge problem, a.k.a. Entropic Optimal Transport problem, and obtain weak semiconvexity and semiconcavity bounds on Schrödinger potentials under mild assumptions on the marginals that are substantially weaker than log-concavity. We deduce from these estimates that Schrödinger bridges satisfy a logarithmic Sobolev inequality on the product space. Our proof strategy is based on a second order analysis of coupling by reflection on the characteristics of the Hamilton–Jacobi–Bellman equation that reveals the existence of new classes of invariant functions for the corresponding flow.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01264-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01264-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了二次薛定谔桥问题(又称熵最优传输问题),并在边际的温和假设下得到了薛定谔势的弱半凸性和半凹性约束,这些约束大大弱于对数凹性。我们从这些估计推导出薛定谔桥满足乘积空间上的对数索波列夫不等式。我们的证明策略基于对汉密尔顿-雅各比-贝尔曼方程特征的反思耦合的二阶分析,揭示了相应流的新类不变函数的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges

We investigate the quadratic Schrödinger bridge problem, a.k.a. Entropic Optimal Transport problem, and obtain weak semiconvexity and semiconcavity bounds on Schrödinger potentials under mild assumptions on the marginals that are substantially weaker than log-concavity. We deduce from these estimates that Schrödinger bridges satisfy a logarithmic Sobolev inequality on the product space. Our proof strategy is based on a second order analysis of coupling by reflection on the characteristics of the Hamilton–Jacobi–Bellman equation that reveals the existence of new classes of invariant functions for the corresponding flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信