{"title":"薛定谔电位的弱半凸估计和薛定谔桥的对数索波列夫不等式","authors":"Giovanni Conforti","doi":"10.1007/s00440-024-01264-6","DOIUrl":null,"url":null,"abstract":"<p>We investigate the quadratic Schrödinger bridge problem, a.k.a. Entropic Optimal Transport problem, and obtain weak semiconvexity and semiconcavity bounds on Schrödinger potentials under mild assumptions on the marginals that are substantially weaker than log-concavity. We deduce from these estimates that Schrödinger bridges satisfy a logarithmic Sobolev inequality on the product space. Our proof strategy is based on a second order analysis of coupling by reflection on the characteristics of the Hamilton–Jacobi–Bellman equation that reveals the existence of new classes of invariant functions for the corresponding flow.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges\",\"authors\":\"Giovanni Conforti\",\"doi\":\"10.1007/s00440-024-01264-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the quadratic Schrödinger bridge problem, a.k.a. Entropic Optimal Transport problem, and obtain weak semiconvexity and semiconcavity bounds on Schrödinger potentials under mild assumptions on the marginals that are substantially weaker than log-concavity. We deduce from these estimates that Schrödinger bridges satisfy a logarithmic Sobolev inequality on the product space. Our proof strategy is based on a second order analysis of coupling by reflection on the characteristics of the Hamilton–Jacobi–Bellman equation that reveals the existence of new classes of invariant functions for the corresponding flow.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01264-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01264-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Weak semiconvexity estimates for Schrödinger potentials and logarithmic Sobolev inequality for Schrödinger bridges
We investigate the quadratic Schrödinger bridge problem, a.k.a. Entropic Optimal Transport problem, and obtain weak semiconvexity and semiconcavity bounds on Schrödinger potentials under mild assumptions on the marginals that are substantially weaker than log-concavity. We deduce from these estimates that Schrödinger bridges satisfy a logarithmic Sobolev inequality on the product space. Our proof strategy is based on a second order analysis of coupling by reflection on the characteristics of the Hamilton–Jacobi–Bellman equation that reveals the existence of new classes of invariant functions for the corresponding flow.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.