Zhen Chen, Zhi-Cheng Shi, Jie Song, Bi-Hua Huang, Yan Xia
{"title":"在纳米量子点系统中通过 GRAPE 算法灵活制备 W 态","authors":"Zhen Chen, Zhi-Cheng Shi, Jie Song, Bi-Hua Huang, Yan Xia","doi":"10.1088/1612-202x/ad2923","DOIUrl":null,"url":null,"abstract":"In this paper, we put forward a scheme for flexibly preparing W states in the presence of detunings and asymmetric couplings in a nanoring-quantum-dot (nanoring-QD) system. Based on the gradient ascent pulse engineering algorithm, the coupling strength modulation (CSM) and the energy level modulation (ELM) methods are proposed, respectively. In the CSM method, the waveforms of the coupling strengths are properly designed to compensate for detunings, thus the decline on the fidelity is effectively suppressed. For the asymmetric couplings, a high-fidelity W state can be generated by the ELM method, which alters the energy levels of QDs in a desired manner. Finally, we generalize the current scheme to realize the preparation of <italic toggle=\"yes\">N</italic>-particle W states in nanoring-QD systems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible preparation of the W state via the GRAPE algorithm in a nanoring-quantum-dot system\",\"authors\":\"Zhen Chen, Zhi-Cheng Shi, Jie Song, Bi-Hua Huang, Yan Xia\",\"doi\":\"10.1088/1612-202x/ad2923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we put forward a scheme for flexibly preparing W states in the presence of detunings and asymmetric couplings in a nanoring-quantum-dot (nanoring-QD) system. Based on the gradient ascent pulse engineering algorithm, the coupling strength modulation (CSM) and the energy level modulation (ELM) methods are proposed, respectively. In the CSM method, the waveforms of the coupling strengths are properly designed to compensate for detunings, thus the decline on the fidelity is effectively suppressed. For the asymmetric couplings, a high-fidelity W state can be generated by the ELM method, which alters the energy levels of QDs in a desired manner. Finally, we generalize the current scheme to realize the preparation of <italic toggle=\\\"yes\\\">N</italic>-particle W states in nanoring-QD systems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad2923\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad2923","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种在纳米量子点(nanoring-QD)系统中存在失谐和非对称耦合的情况下灵活制备W态的方案。在梯度上升脉冲工程算法的基础上,分别提出了耦合强度调制(CSM)和能级调制(ELM)方法。在 CSM 方法中,耦合强度的波形经过适当设计以补偿失谐,从而有效抑制了保真度的下降。对于非对称耦合,ELM 方法可以生成高保真 W 态,从而以理想的方式改变 QD 的能级。最后,我们将目前的方案推广到纳米星-QD 系统中,实现了 N 粒子 W 态的制备。
Flexible preparation of the W state via the GRAPE algorithm in a nanoring-quantum-dot system
In this paper, we put forward a scheme for flexibly preparing W states in the presence of detunings and asymmetric couplings in a nanoring-quantum-dot (nanoring-QD) system. Based on the gradient ascent pulse engineering algorithm, the coupling strength modulation (CSM) and the energy level modulation (ELM) methods are proposed, respectively. In the CSM method, the waveforms of the coupling strengths are properly designed to compensate for detunings, thus the decline on the fidelity is effectively suppressed. For the asymmetric couplings, a high-fidelity W state can be generated by the ELM method, which alters the energy levels of QDs in a desired manner. Finally, we generalize the current scheme to realize the preparation of N-particle W states in nanoring-QD systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.