{"title":"通过弗罗本尼斯图和 f-nilpotent 奇点计算几何分支","authors":"HAILONG DAO, KYLE MADDOX, VAIBHAV PANDEY","doi":"10.1017/nmj.2024.4","DOIUrl":null,"url":null,"abstract":"We give an explicit formula to count the number of geometric branches of a curve in positive characteristic using the theory of tight closure. This formula readily shows that the property of having a single geometric branch characterizes <jats:italic>F</jats:italic>-nilpotent curves. Further, we show that a reduced, local <jats:italic>F</jats:italic>-nilpotent ring has a single geometric branch; in particular, it is a domain. Finally, we study inequalities of Frobenius test exponents along purely inseparable ring extensions with applications to <jats:italic>F</jats:italic>-nilpotent affine semigroup rings.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"134 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COUNTING GEOMETRIC BRANCHES VIA THE FROBENIUS MAP AND F-NILPOTENT SINGULARITIES\",\"authors\":\"HAILONG DAO, KYLE MADDOX, VAIBHAV PANDEY\",\"doi\":\"10.1017/nmj.2024.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an explicit formula to count the number of geometric branches of a curve in positive characteristic using the theory of tight closure. This formula readily shows that the property of having a single geometric branch characterizes <jats:italic>F</jats:italic>-nilpotent curves. Further, we show that a reduced, local <jats:italic>F</jats:italic>-nilpotent ring has a single geometric branch; in particular, it is a domain. Finally, we study inequalities of Frobenius test exponents along purely inseparable ring extensions with applications to <jats:italic>F</jats:italic>-nilpotent affine semigroup rings.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2024.4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
COUNTING GEOMETRIC BRANCHES VIA THE FROBENIUS MAP AND F-NILPOTENT SINGULARITIES
We give an explicit formula to count the number of geometric branches of a curve in positive characteristic using the theory of tight closure. This formula readily shows that the property of having a single geometric branch characterizes F-nilpotent curves. Further, we show that a reduced, local F-nilpotent ring has a single geometric branch; in particular, it is a domain. Finally, we study inequalities of Frobenius test exponents along purely inseparable ring extensions with applications to F-nilpotent affine semigroup rings.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.