{"title":"三维对数丰度特征注释","authors":"ZHENG XU","doi":"10.1017/nmj.2024.3","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the nonvanishing and some special cases of the abundance for log canonical threefold pairs over an algebraically closed field <jats:italic>k</jats:italic> of characteristic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline2.png\" /> <jats:tex-math> $p> 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More precisely, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline3.png\" /> <jats:tex-math> $(X,B)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a projective log canonical threefold pair over <jats:italic>k</jats:italic> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline4.png\" /> <jats:tex-math> $K_{X}+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is pseudo-effective, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline5.png\" /> <jats:tex-math> $\\kappa (K_{X}+B)\\geq 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline6.png\" /> <jats:tex-math> $K_{X}+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nef and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline7.png\" /> <jats:tex-math> $\\kappa (K_{X}+B)\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline8.png\" /> <jats:tex-math> $K_{X}+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is semi-ample. As applications, we show that the log canonical rings of projective log canonical threefold pairs over <jats:italic>k</jats:italic> are finitely generated and the abundance holds when the nef dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline9.png\" /> <jats:tex-math> $n(K_{X}+B)\\leq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or when the Albanese map <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline10.png\" /> <jats:tex-math> $a_{X}:X\\to \\mathrm {Alb}(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nontrivial. Moreover, we prove that the abundance for klt threefold pairs over <jats:italic>k</jats:italic> implies the abundance for log canonical threefold pairs over <jats:italic>k</jats:italic>.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"49 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NOTE ON THE THREE-DIMENSIONAL LOG CANONICAL ABUNDANCE IN CHARACTERISTIC\",\"authors\":\"ZHENG XU\",\"doi\":\"10.1017/nmj.2024.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove the nonvanishing and some special cases of the abundance for log canonical threefold pairs over an algebraically closed field <jats:italic>k</jats:italic> of characteristic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000035_inline2.png\\\" /> <jats:tex-math> $p> 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More precisely, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000035_inline3.png\\\" /> <jats:tex-math> $(X,B)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a projective log canonical threefold pair over <jats:italic>k</jats:italic> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000035_inline4.png\\\" /> <jats:tex-math> $K_{X}+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is pseudo-effective, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000035_inline5.png\\\" /> <jats:tex-math> $\\\\kappa (K_{X}+B)\\\\geq 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000035_inline6.png\\\" /> <jats:tex-math> $K_{X}+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nef and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000035_inline7.png\\\" /> <jats:tex-math> $\\\\kappa (K_{X}+B)\\\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000035_inline8.png\\\" /> <jats:tex-math> $K_{X}+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is semi-ample. As applications, we show that the log canonical rings of projective log canonical threefold pairs over <jats:italic>k</jats:italic> are finitely generated and the abundance holds when the nef dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000035_inline9.png\\\" /> <jats:tex-math> $n(K_{X}+B)\\\\leq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or when the Albanese map <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000035_inline10.png\\\" /> <jats:tex-math> $a_{X}:X\\\\to \\\\mathrm {Alb}(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nontrivial. Moreover, we prove that the abundance for klt threefold pairs over <jats:italic>k</jats:italic> implies the abundance for log canonical threefold pairs over <jats:italic>k</jats:italic>.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2024.3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了在特征为 $p> 3$ 的代数闭域 k 上的 log canonical threefold 对的丰度的不消失性和一些特例。更准确地说,我们证明了如果 $(X,B)$ 是 k 上的投影对数典型三折对,并且 $K_{X}+B$ 是伪有效的,那么 $\kappa (K_{X}+B)\geq 0$ ,如果 $K_{X}+B$ 是新有效的,并且 $\kappa (K_{X}+B)\geq 1$ ,那么 $K_{X}+B$ 是半范例。作为应用,我们证明了在 k 上的投影对数对数对数三重环是有限生成的,并且当 nef 维度 $n(K_{X}+B)\leq 2$ 或 Albanese 映射 $a_{X}:X\to \mathrm {Alb}(X)$ 是非微观时,丰度成立。此外,我们还证明了 k 上 klt 三重对的丰度意味着 k 上 log canonical 三重对的丰度。
NOTE ON THE THREE-DIMENSIONAL LOG CANONICAL ABUNDANCE IN CHARACTERISTIC
In this paper, we prove the nonvanishing and some special cases of the abundance for log canonical threefold pairs over an algebraically closed field k of characteristic $p> 3$ . More precisely, we prove that if $(X,B)$ be a projective log canonical threefold pair over k and $K_{X}+B$ is pseudo-effective, then $\kappa (K_{X}+B)\geq 0$ , and if $K_{X}+B$ is nef and $\kappa (K_{X}+B)\geq 1$ , then $K_{X}+B$ is semi-ample. As applications, we show that the log canonical rings of projective log canonical threefold pairs over k are finitely generated and the abundance holds when the nef dimension $n(K_{X}+B)\leq 2$ or when the Albanese map $a_{X}:X\to \mathrm {Alb}(X)$ is nontrivial. Moreover, we prove that the abundance for klt threefold pairs over k implies the abundance for log canonical threefold pairs over k.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.