二氧化碳中流线型放电的三维动力学蒙特卡洛研究

R Marskar
{"title":"二氧化碳中流线型放电的三维动力学蒙特卡洛研究","authors":"R Marskar","doi":"10.1088/1361-6595/ad28cf","DOIUrl":null,"url":null,"abstract":"We theoretically study the inception and propagation of positive and negative streamers in <inline-formula>\n<tex-math><?CDATA $\\mathrm{CO_{2}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">C</mml:mi><mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"psstad28cfieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Our study is done in 3D, using a newly formulated kinetic Monte Carlo discharge model where the electrons are described as drifting and diffusing particles that adhere to the local field approximation. Our emphasis lies on electron attachment and photoionization. For negative streamers we find that dissociative attachment in the streamer channels leads to appearance of localized segments of increased electric fields, while an analogous feature is not observed for positive-polarity discharges. Positive streamers, unlike negative streamers, require free electrons ahead of them in order to propagate. In <inline-formula>\n<tex-math><?CDATA $\\mathrm{CO_{2}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">C</mml:mi><mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"psstad28cfieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, just as in air, these electrons are supplied through photoionization. However, ionizing radiation in <inline-formula>\n<tex-math><?CDATA $\\mathrm{CO_{2}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">C</mml:mi><mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"psstad28cfieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is absorbed quite rapidly and is also weaker than in air, which has important ramifications for the emerging positive streamer morphology (radius, velocity, and fields). We perform a computational analysis which shows that positive streamers can propagate due to photoionization in <inline-formula>\n<tex-math><?CDATA $\\mathrm{CO_{2}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">C</mml:mi><mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"psstad28cfieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Conversely, photoionization has no effect on negative streamer fronts, but plays a major role in the coupling between negative streamers and the cathode. Photoionization in <inline-formula>\n<tex-math><?CDATA $\\mathrm{CO_{2}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">C</mml:mi><mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"psstad28cfieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is therefore important for the propagation of both positive and negative streamers. Our results are relevant in several applications, e.g. <inline-formula>\n<tex-math><?CDATA $\\mathrm{CO_{2}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">C</mml:mi><mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"psstad28cfieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> conversion and high-voltage technology (where <inline-formula>\n<tex-math><?CDATA $\\mathrm{CO_{2}}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">C</mml:mi><mml:msub><mml:mi mathvariant=\"normal\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"psstad28cfieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is used in pure form or admixed with other gases).","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D kinetic Monte Carlo study of streamer discharges in CO2\",\"authors\":\"R Marskar\",\"doi\":\"10.1088/1361-6595/ad28cf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically study the inception and propagation of positive and negative streamers in <inline-formula>\\n<tex-math><?CDATA $\\\\mathrm{CO_{2}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">C</mml:mi><mml:msub><mml:mi mathvariant=\\\"normal\\\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"psstad28cfieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. Our study is done in 3D, using a newly formulated kinetic Monte Carlo discharge model where the electrons are described as drifting and diffusing particles that adhere to the local field approximation. Our emphasis lies on electron attachment and photoionization. For negative streamers we find that dissociative attachment in the streamer channels leads to appearance of localized segments of increased electric fields, while an analogous feature is not observed for positive-polarity discharges. Positive streamers, unlike negative streamers, require free electrons ahead of them in order to propagate. In <inline-formula>\\n<tex-math><?CDATA $\\\\mathrm{CO_{2}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">C</mml:mi><mml:msub><mml:mi mathvariant=\\\"normal\\\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"psstad28cfieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, just as in air, these electrons are supplied through photoionization. However, ionizing radiation in <inline-formula>\\n<tex-math><?CDATA $\\\\mathrm{CO_{2}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">C</mml:mi><mml:msub><mml:mi mathvariant=\\\"normal\\\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"psstad28cfieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is absorbed quite rapidly and is also weaker than in air, which has important ramifications for the emerging positive streamer morphology (radius, velocity, and fields). We perform a computational analysis which shows that positive streamers can propagate due to photoionization in <inline-formula>\\n<tex-math><?CDATA $\\\\mathrm{CO_{2}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">C</mml:mi><mml:msub><mml:mi mathvariant=\\\"normal\\\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"psstad28cfieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. Conversely, photoionization has no effect on negative streamer fronts, but plays a major role in the coupling between negative streamers and the cathode. Photoionization in <inline-formula>\\n<tex-math><?CDATA $\\\\mathrm{CO_{2}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">C</mml:mi><mml:msub><mml:mi mathvariant=\\\"normal\\\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"psstad28cfieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is therefore important for the propagation of both positive and negative streamers. Our results are relevant in several applications, e.g. <inline-formula>\\n<tex-math><?CDATA $\\\\mathrm{CO_{2}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">C</mml:mi><mml:msub><mml:mi mathvariant=\\\"normal\\\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"psstad28cfieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> conversion and high-voltage technology (where <inline-formula>\\n<tex-math><?CDATA $\\\\mathrm{CO_{2}}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">C</mml:mi><mml:msub><mml:mi mathvariant=\\\"normal\\\">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"psstad28cfieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is used in pure form or admixed with other gases).\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad28cf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad28cf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从理论上研究了二氧化碳中正负流线的萌发和传播。我们的研究是在三维环境中进行的,使用了新制定的动力学蒙特卡洛放电模型,在该模型中,电子被描述为漂移和扩散的粒子,并遵循局部场近似。我们的重点在于电子附着和光离子化。我们发现,对于负流束,流束通道中的分离附着会导致出现局部电场增大的区段,而对于正极性放电,则观察不到类似的特征。与负电流不同,正电流需要前面有自由电子才能传播。在二氧化碳中,就像在空气中一样,这些电子是通过光离子化提供的。然而,二氧化碳中的电离辐射吸收相当快,而且比空气中的电离辐射弱,这对新出现的正流线形态(半径、速度和场)有重要影响。我们进行的计算分析表明,二氧化碳中的光离子化会导致正流线传播。相反,光离子化对负流线前沿没有影响,但对负流线与阴极之间的耦合起着重要作用。因此,二氧化碳中的光离子化对正负流线的传播都很重要。我们的研究结果适用于多种应用领域,例如二氧化碳转化和高压技术(二氧化碳以纯态或与其他气体混合使用)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 3D kinetic Monte Carlo study of streamer discharges in CO2
We theoretically study the inception and propagation of positive and negative streamers in CO2 . Our study is done in 3D, using a newly formulated kinetic Monte Carlo discharge model where the electrons are described as drifting and diffusing particles that adhere to the local field approximation. Our emphasis lies on electron attachment and photoionization. For negative streamers we find that dissociative attachment in the streamer channels leads to appearance of localized segments of increased electric fields, while an analogous feature is not observed for positive-polarity discharges. Positive streamers, unlike negative streamers, require free electrons ahead of them in order to propagate. In CO2 , just as in air, these electrons are supplied through photoionization. However, ionizing radiation in CO2 is absorbed quite rapidly and is also weaker than in air, which has important ramifications for the emerging positive streamer morphology (radius, velocity, and fields). We perform a computational analysis which shows that positive streamers can propagate due to photoionization in CO2 . Conversely, photoionization has no effect on negative streamer fronts, but plays a major role in the coupling between negative streamers and the cathode. Photoionization in CO2 is therefore important for the propagation of both positive and negative streamers. Our results are relevant in several applications, e.g. CO2 conversion and high-voltage technology (where CO2 is used in pure form or admixed with other gases).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信