关于王友准局域质量的一些评论

Bowen Zhao, Lars Andersson, Shing-Tung Yau
{"title":"关于王友准局域质量的一些评论","authors":"Bowen Zhao, Lars Andersson, Shing-Tung Yau","doi":"arxiv-2402.19310","DOIUrl":null,"url":null,"abstract":"We review Wang-Yau quasi-local definitions along the line of gravitational\nHamiltonian. This makes clear the connection and difference between Wang-Yau\ndefinition and Brown-York or even global ADM definition. We make a brief\ncomment on admissibility condition in Wang-Yau quasi-lcoal mass. We extend the\npositivity proof for Wang-Yau quasi-local energy to allow possible presence of\nstrictly stable apparent horizons through establishing solvability of Dirac\nequation in certain 3-manifolds that possess cylindrical ends, as in the case\nof Jang's graph blowing up at marginally outer trapped surfaces.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Remarks on Wang-Yau Quasi-Local Mass\",\"authors\":\"Bowen Zhao, Lars Andersson, Shing-Tung Yau\",\"doi\":\"arxiv-2402.19310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review Wang-Yau quasi-local definitions along the line of gravitational\\nHamiltonian. This makes clear the connection and difference between Wang-Yau\\ndefinition and Brown-York or even global ADM definition. We make a brief\\ncomment on admissibility condition in Wang-Yau quasi-lcoal mass. We extend the\\npositivity proof for Wang-Yau quasi-local energy to allow possible presence of\\nstrictly stable apparent horizons through establishing solvability of Dirac\\nequation in certain 3-manifolds that possess cylindrical ends, as in the case\\nof Jang's graph blowing up at marginally outer trapped surfaces.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.19310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.19310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们沿着引力哈密顿的思路回顾了王-尤准局域定义。这明确了王-尤定义与布朗-约克甚至全局 ADM 定义之间的联系与区别。我们简要评述了王尤准局部质量的可接受性条件。我们扩展了旺-尤准局域能的正向证明,通过建立某些具有圆柱末端的三芒星中狄拉克方程的可解性,允许可能存在严格稳定的表观水平面,如张氏图在边缘外困面炸开的情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Remarks on Wang-Yau Quasi-Local Mass
We review Wang-Yau quasi-local definitions along the line of gravitational Hamiltonian. This makes clear the connection and difference between Wang-Yau definition and Brown-York or even global ADM definition. We make a brief comment on admissibility condition in Wang-Yau quasi-lcoal mass. We extend the positivity proof for Wang-Yau quasi-local energy to allow possible presence of strictly stable apparent horizons through establishing solvability of Dirac equation in certain 3-manifolds that possess cylindrical ends, as in the case of Jang's graph blowing up at marginally outer trapped surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信