{"title":"不同振幅的线性加载和扰动对砂岩的综合影响机制","authors":"","doi":"10.1007/s40948-024-00773-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>To comprehend the stress state and response characteristics of materials under complex conditions, researchers have decomposed stress states into fundamental paths and investigated diverse path combinations. To ensure comparability, four identical samples were carefully selected from a pool of 100 samples using ultrasonic tests based on the wave speed and waveform characteristics. These samples underwent specially designed stress paths to analyze the combined effects of linear loading and perturbation. Our result analysis centred on the perturbation amplitude and stress levels during composite action, revealing intricate relationships between the stress levels, strain, and nonlinear/linear energy evolution under complex stress paths. Simultaneously, 3D surface fractures were precisely reconstructed using the YOLOv5 and FAST feature point detection algorithms, elucidating the evolving patterns of the fractures. As a result of our study, the rotation trend of the main fracture was validated by integrating mechanics and P-wave reflection rules. Notably, our experimental results closely aligned with the theoretical predictions, showing the reliability of our study. These findings can significantly contribute to guiding safety protocols in the field of underground engineering.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"23 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined effect mechanism of linear loading and disturbance with different amplitudes on sandstone\",\"authors\":\"\",\"doi\":\"10.1007/s40948-024-00773-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>To comprehend the stress state and response characteristics of materials under complex conditions, researchers have decomposed stress states into fundamental paths and investigated diverse path combinations. To ensure comparability, four identical samples were carefully selected from a pool of 100 samples using ultrasonic tests based on the wave speed and waveform characteristics. These samples underwent specially designed stress paths to analyze the combined effects of linear loading and perturbation. Our result analysis centred on the perturbation amplitude and stress levels during composite action, revealing intricate relationships between the stress levels, strain, and nonlinear/linear energy evolution under complex stress paths. Simultaneously, 3D surface fractures were precisely reconstructed using the YOLOv5 and FAST feature point detection algorithms, elucidating the evolving patterns of the fractures. As a result of our study, the rotation trend of the main fracture was validated by integrating mechanics and P-wave reflection rules. Notably, our experimental results closely aligned with the theoretical predictions, showing the reliability of our study. These findings can significantly contribute to guiding safety protocols in the field of underground engineering.</p>\",\"PeriodicalId\":12813,\"journal\":{\"name\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40948-024-00773-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00773-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 为了解材料在复杂条件下的应力状态和响应特性,研究人员将应力状态分解为基本路径,并研究了各种路径组合。为了确保可比性,研究人员根据波速和波形特征,从 100 个使用超声波测试的样品中精心挑选了四个相同的样品。这些样品经过了专门设计的应力路径,以分析线性加载和扰动的综合效应。我们的结果分析以复合作用过程中的扰动振幅和应力水平为中心,揭示了复杂应力路径下应力水平、应变和非线性/线性能量演变之间的复杂关系。同时,利用 YOLOv5 和 FAST 特征点检测算法精确重建了三维表面断裂,阐明了断裂的演变模式。研究结果表明,综合力学和 P 波反射规则验证了主断裂的旋转趋势。值得注意的是,我们的实验结果与理论预测密切吻合,显示了我们研究的可靠性。这些研究结果对指导地下工程领域的安全规程大有裨益。
Combined effect mechanism of linear loading and disturbance with different amplitudes on sandstone
Abstract
To comprehend the stress state and response characteristics of materials under complex conditions, researchers have decomposed stress states into fundamental paths and investigated diverse path combinations. To ensure comparability, four identical samples were carefully selected from a pool of 100 samples using ultrasonic tests based on the wave speed and waveform characteristics. These samples underwent specially designed stress paths to analyze the combined effects of linear loading and perturbation. Our result analysis centred on the perturbation amplitude and stress levels during composite action, revealing intricate relationships between the stress levels, strain, and nonlinear/linear energy evolution under complex stress paths. Simultaneously, 3D surface fractures were precisely reconstructed using the YOLOv5 and FAST feature point detection algorithms, elucidating the evolving patterns of the fractures. As a result of our study, the rotation trend of the main fracture was validated by integrating mechanics and P-wave reflection rules. Notably, our experimental results closely aligned with the theoretical predictions, showing the reliability of our study. These findings can significantly contribute to guiding safety protocols in the field of underground engineering.
期刊介绍:
This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.