{"title":"不同类型网格图的两步着色法","authors":"A. V. Smirnov","doi":"10.3103/S0146411623070131","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the NP-hard problem of the two-step coloring of a graph. It is required to color the graph in the given number of colors in a way, when no pair of vertices has the same color, if these vertices are at a distance of one or two between each other. The optimum two-step coloring is one that uses the minimum possible number of colors. The two-step coloring problem is studied in application to grid graphs. We consider four types of grids: triangular, square, hexagonal, and octagonal. We show that the optimum two-step coloring of hexagonal and octagonal grid graphs requires four colors in the general case. We formulate the polynomial algorithms for such a coloring. A square grid graph with the maximum vertex degree equal to 3 requires four or five colors for a two-step coloring. In this paper, we propose the backtracking algorithm for this case. Also, we present the algorithm, which works in linear time relative to the number of vertices, for the two-step coloring in seven colors of a triangular grid graph and show that this coloring is always correct. If the maximum vertex degree equals six, the solution is optimum.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"57 7","pages":"760 - 771"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Step Coloring of Grid Graphs of Different Types\",\"authors\":\"A. V. Smirnov\",\"doi\":\"10.3103/S0146411623070131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we consider the NP-hard problem of the two-step coloring of a graph. It is required to color the graph in the given number of colors in a way, when no pair of vertices has the same color, if these vertices are at a distance of one or two between each other. The optimum two-step coloring is one that uses the minimum possible number of colors. The two-step coloring problem is studied in application to grid graphs. We consider four types of grids: triangular, square, hexagonal, and octagonal. We show that the optimum two-step coloring of hexagonal and octagonal grid graphs requires four colors in the general case. We formulate the polynomial algorithms for such a coloring. A square grid graph with the maximum vertex degree equal to 3 requires four or five colors for a two-step coloring. In this paper, we propose the backtracking algorithm for this case. Also, we present the algorithm, which works in linear time relative to the number of vertices, for the two-step coloring in seven colors of a triangular grid graph and show that this coloring is always correct. If the maximum vertex degree equals six, the solution is optimum.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"57 7\",\"pages\":\"760 - 771\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411623070131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411623070131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Two-Step Coloring of Grid Graphs of Different Types
In this article, we consider the NP-hard problem of the two-step coloring of a graph. It is required to color the graph in the given number of colors in a way, when no pair of vertices has the same color, if these vertices are at a distance of one or two between each other. The optimum two-step coloring is one that uses the minimum possible number of colors. The two-step coloring problem is studied in application to grid graphs. We consider four types of grids: triangular, square, hexagonal, and octagonal. We show that the optimum two-step coloring of hexagonal and octagonal grid graphs requires four colors in the general case. We formulate the polynomial algorithms for such a coloring. A square grid graph with the maximum vertex degree equal to 3 requires four or five colors for a two-step coloring. In this paper, we propose the backtracking algorithm for this case. Also, we present the algorithm, which works in linear time relative to the number of vertices, for the two-step coloring in seven colors of a triangular grid graph and show that this coloring is always correct. If the maximum vertex degree equals six, the solution is optimum.
期刊介绍:
Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision