关于受限的福克纳距离集

José Gaitan, Allan Greenleaf, Eyvindur Ari Palsson, Georgios Psaromiligkos
{"title":"关于受限的福克纳距离集","authors":"José Gaitan, Allan Greenleaf, Eyvindur Ari Palsson, Georgios Psaromiligkos","doi":"10.4153/s0008414x24000117","DOIUrl":null,"url":null,"abstract":"<p>We introduce a class of Falconer distance problems, which we call of restricted type, lying between the classical version and its pinned variant. Prototypical restricted distance sets are the diagonal distance sets, <span>k</span>-point configuration sets given by <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}\\Delta^{\\mathrm{diag}}(E)= \\{ \\,|(x,x,\\dots,x)-(y_1,y_2,\\dots,y_{k-1})| : x, y_1, \\dots,y_{k-1} \\in E\\, \\}\\end{align*} $$</span></span></img></span>for a compact <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$E\\subset \\mathbb {R}^d$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k\\ge 3$</span></span></img></span></span>. We show that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta ^{\\mathrm{diag}}(E)$</span></span></img></span></span> has non-empty interior if the Hausdorff dimension of <span>E</span> satisfies <span><span>(0.1)</span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_eqn1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align} \\dim(E)&gt; \\begin{cases} \\frac{2d+1}3, &amp; k=3, \\\\ \\frac{(k-1)d}k,&amp; k\\ge 4. \\end{cases} \\end{align} $$</span></span></img></span>We prove an extension of this to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C^\\omega $</span></span></img></span></span> Riemannian metrics <span>g</span> close to the product of Euclidean metrics. For product metrics, this follows from known results on pinned distance sets, but to obtain a result for general perturbations <span>g</span>, we present a sequence of proofs of partial results, leading up to the proof of the full result, which is based on estimates for multilinear Fourier integral operators.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On restricted Falconer distance sets\",\"authors\":\"José Gaitan, Allan Greenleaf, Eyvindur Ari Palsson, Georgios Psaromiligkos\",\"doi\":\"10.4153/s0008414x24000117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a class of Falconer distance problems, which we call of restricted type, lying between the classical version and its pinned variant. Prototypical restricted distance sets are the diagonal distance sets, <span>k</span>-point configuration sets given by <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align*}\\\\Delta^{\\\\mathrm{diag}}(E)= \\\\{ \\\\,|(x,x,\\\\dots,x)-(y_1,y_2,\\\\dots,y_{k-1})| : x, y_1, \\\\dots,y_{k-1} \\\\in E\\\\, \\\\}\\\\end{align*} $$</span></span></img></span>for a compact <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E\\\\subset \\\\mathbb {R}^d$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k\\\\ge 3$</span></span></img></span></span>. We show that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Delta ^{\\\\mathrm{diag}}(E)$</span></span></img></span></span> has non-empty interior if the Hausdorff dimension of <span>E</span> satisfies <span><span>(0.1)</span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_eqn1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align} \\\\dim(E)&gt; \\\\begin{cases} \\\\frac{2d+1}3, &amp; k=3, \\\\\\\\ \\\\frac{(k-1)d}k,&amp; k\\\\ge 4. \\\\end{cases} \\\\end{align} $$</span></span></img></span>We prove an extension of this to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123035304-0552:S0008414X24000117:S0008414X24000117_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C^\\\\omega $</span></span></img></span></span> Riemannian metrics <span>g</span> close to the product of Euclidean metrics. For product metrics, this follows from known results on pinned distance sets, but to obtain a result for general perturbations <span>g</span>, we present a sequence of proofs of partial results, leading up to the proof of the full result, which is based on estimates for multilinear Fourier integral operators.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一类法尔科纳距离问题,我们称之为受限型问题,它介于经典型问题与其针状变体之间。典型的受限距离集是对角线距离集,k 点配置集由 $$ \begin{align*}\Delta^{mathrm{diag}}(E)=\{\,|(x,x,\dots,x)-(y_1,y_2,\dots,y_{k-1})|:x, y_1, \dots,y_{k-1} \ in E\, \}end{align*} 给出。对于一个紧凑的 $E\subset \mathbb {R}^d$ 和 $k\ge 3$ 来说是 $$。我们证明,如果 E 的 Hausdorff 维满足(0.1)$$ ,那么 $\Delta ^{mathrm{diag}}(E)$ 具有非空的内部。\dim(E)> (开始{案例}\frac{2d+1}3, & k=3, \\frac{(k-1)d}k,& k\ge 4.\end{cases}\end{align} $$We prove an extension of this to $C^\omega $ Riemannian metrics g close to the product of Euclidean metrics.对于乘积度量,这可以从已知的钉距集结果中得出,但是为了得到一般扰动 g 的结果,我们提出了一系列部分结果的证明,最终证明了完整结果,它是基于对多线性傅里叶积分算子的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On restricted Falconer distance sets

We introduce a class of Falconer distance problems, which we call of restricted type, lying between the classical version and its pinned variant. Prototypical restricted distance sets are the diagonal distance sets, k-point configuration sets given by $$ \begin{align*}\Delta^{\mathrm{diag}}(E)= \{ \,|(x,x,\dots,x)-(y_1,y_2,\dots,y_{k-1})| : x, y_1, \dots,y_{k-1} \in E\, \}\end{align*} $$for a compact $E\subset \mathbb {R}^d$ and $k\ge 3$. We show that $\Delta ^{\mathrm{diag}}(E)$ has non-empty interior if the Hausdorff dimension of E satisfies (0.1)$$ \begin{align} \dim(E)> \begin{cases} \frac{2d+1}3, & k=3, \\ \frac{(k-1)d}k,& k\ge 4. \end{cases} \end{align} $$We prove an extension of this to $C^\omega $ Riemannian metrics g close to the product of Euclidean metrics. For product metrics, this follows from known results on pinned distance sets, but to obtain a result for general perturbations g, we present a sequence of proofs of partial results, leading up to the proof of the full result, which is based on estimates for multilinear Fourier integral operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信