有限域上曲线点数的卡茨-萨尔纳克理论的完善

Jonas Bergström, Everett W. Howe, Elisa Lorenzo García, Christophe Ritzenthaler
{"title":"有限域上曲线点数的卡茨-萨尔纳克理论的完善","authors":"Jonas Bergström, Everett W. Howe, Elisa Lorenzo García, Christophe Ritzenthaler","doi":"10.4153/s0008414x2400004x","DOIUrl":null,"url":null,"abstract":"<p>This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123836538-0613:S0008414X2400004X:S0008414X2400004X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$g\\geq 3$</span></span></img></span></span>. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123836538-0613:S0008414X2400004X:S0008414X2400004X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\geq 3$</span></span></img></span></span>. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinements of Katz–Sarnak theory for the number of points on curves over finite fields\",\"authors\":\"Jonas Bergström, Everett W. Howe, Elisa Lorenzo García, Christophe Ritzenthaler\",\"doi\":\"10.4153/s0008414x2400004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123836538-0613:S0008414X2400004X:S0008414X2400004X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$g\\\\geq 3$</span></span></img></span></span>. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226123836538-0613:S0008414X2400004X:S0008414X2400004X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\geq 3$</span></span></img></span></span>. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x2400004x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x2400004x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在理论、实验和猜想上超越了卡茨-萨尔纳克(Katz-Sarnak)关于有限域上曲线按有理点数分布的理论。特别是,我们给出了一个公式,用于测量属$g\geq 3$的(非椭圆)曲线的这种分布的不对称性的矩的极限。实验结果表明,对于属$g\geq 3$的所有曲线,收敛概念比卡茨-萨尔纳克框架提供的收敛概念更强。然而,对于椭圆曲线和每个属的超椭圆曲线,我们证明这种更强的收敛是不可能发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinements of Katz–Sarnak theory for the number of points on curves over finite fields

This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus $g\geq 3$. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus $\geq 3$. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信